Toolbox for nonlinear estimation

Miroslav Flídr, Miroslav Šimandl, Jindřich Duník and Ondřej Straka

Research Centre Data, Algorithms and Decision Making
Faculty of Applied Sciences
University of West Bohemia in Pilsen
Czech Republic

Outline

- What task should a software tool support?
 - Nonlinear state estimation
 - General Solution
- 2 The demands placed on software tool
- Nonlinear filtering toolbox
 - Description of probability density functions
 - Description of the state space systems
 - Estimators
- Example
- 5 Future version features
 - Features of the upcoming version
 - Future version example
- 6 Conclusion

Problem formulation

Consider multivariate nonlinear stochastic system

$$x_{k+1} = f_k(x_k, u_k, w_k),$$
 $k = 0, 1, 2, ...$
 $z_k = h_k(x_k, v_k),$ $k = 0, 1, 2, ...$

 $x_k \in \mathbb{R}^{n_x}$... non-measurable state

 $\boldsymbol{w}_k \in \mathbb{R}^{n_x}$... state white noise

 $z_k \in \mathbb{R}^{n_z}$. . . measurement

 $\mathbf{v}_k \in \mathbb{R}^{n_z}\dots$ measurement white noise

 $u_k \in \mathbb{R}^{n_u}$... control

- ✓ Both noises are mutually independent and they are also independent of the known initial state x_0 pdf $p(x_0)$.
- \checkmark The vector mappings $f: \mathbb{R}^{n_x} \to \mathbb{R}^{n_x}, h: \mathbb{R}^{n_x} \to \mathbb{R}^{n_z}$ are known

The aim: to the estimate the non-measurable state x_k

The posterior pdf $p(x_k|z^{\ell}, u_{k-1})$ is sought!

$$z^{\ell} \triangleq [z_0, z_1, \dots, z_{\ell}] \dots$$
 set of measurements

Třešť 2006 -3/17-Miroslav Flídr et.al. University of West Bohemia in Pilsen

General Solution

General solution obtainable by Bayesian approach

 \triangleright solution of the **filtering problem** ($\ell = k$)

$$p(\mathbf{x}_k|\mathbf{z}^k, \mathbf{u}_{k-1}) = \frac{p(\mathbf{x}_k|\mathbf{z}^{k-1}, \mathbf{u}_{k-1})p(\mathbf{z}_k|\mathbf{x}_k)}{\int p(\mathbf{x}_k|\mathbf{z}^{k-1}, \mathbf{u}_{k-1})p(\mathbf{z}_k|\mathbf{x}_k)d\mathbf{x}_k},$$

$$p(\mathbf{x}_k|\mathbf{z}^{k-1}, \mathbf{u}_{k-1}) = \int p(\mathbf{x}_{k-1}|\mathbf{z}^{k-1}, \mathbf{u}_{k-2})p(\mathbf{x}_k|\mathbf{x}_{k-1}, \mathbf{u}_{k-1})d\mathbf{x}_{k-1}$$

 \triangleright solution of the **multistep prediction problem** ($\ell < k$)

$$p(\mathbf{x}_k|\mathbf{z}^{\ell},\mathbf{u}_{k-1}) = \int p(\mathbf{x}_{k-1}|\mathbf{z}^{\ell},\mathbf{u}_{k-2})p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{u}_{k-1})d\mathbf{x}_{k-1}$$

 \triangleright solution of the **multistep smoothing problem** $(\ell > k)$

$$p(\mathbf{x}_k|\mathbf{z}^{\ell}, \mathbf{u}_{k-1}) = p(\mathbf{x}_k|\mathbf{z}^k, \mathbf{u}_{k-1}) \int \frac{p(\mathbf{x}_{k+1}|\mathbf{z}^{\ell}, \mathbf{u}_k)}{p(\mathbf{x}_{k+1}|\mathbf{z}^k, \mathbf{u}_k)} p(\mathbf{x}_{k+1}|\mathbf{x}_k, \mathbf{u}_k) d\mathbf{x}_{k+1}$$

Třešť 2006 Miroslav Flídr et.al. -4/17-University of West Bohemia in Pilsen

General Solution

Solutions of Bayesian recursive relations for filtering, prediction and smoothing problems

Exact solutions - valid only for special class of systems

- ➤ Kalman filter
- > Gaussian sum filter
- ➤ Daum filter

Approximate local methods

- Extended Kalman filter
- > Divided difference filter
- ➤ Unscented Kalman filter

Approximate global methods

- > Gaussian sum filter
- Point-mass method
- > Particle filters

Miroslav Flútr et.al. Třešť 2006 -5/17- University of West Bohemia in Pilsen

What criteria should the toolbox meet?

- ✓ to be highly modular, easily extensible and user friendly
- ✓ to provide multi-step prediction, filtering and multi-step smoothing
- ✓ to be build in MATLAB environment

Which tasks should be provided by the toolbox?

- ✓ complete description of the system
- ✓ simulation of the system
- ✓ choice and application of the suitable estimator
- easy extensibility with new estimators

Třešť 2006 Miroslav Flídr et.al. -6/17-University of West Bohemia in Pilsen

Aren't there already Matlab toolboxes for nonlinear estimation?

- KALMTOOL (http://server.oersted.dtu.dk/personal/or/kalmtool3/)
- ➤ ReBEL (HTTP://CHOOSH.ECE.OGI.EDU/REBEL/)

Advantages & disadvantages of those toolboxes

- ✓ the computational demands of estimation process are moderate
- ✓ KALMTOOL has Simulink support
- **x** suitable only for filtering problem
- **x** not easily reusable code (monolithic design)
- **x** provide only point estimate

However, both mentioned toolboxes doesn't fully meet specified demands!!

Miroslav Flídr et.al. Třeší 2006 -7/17- University of West Bohemia in Pilsen

Advantages of presented framework

- > takes advantage of Matlab **object oriented** programming features
- > can handle filtering and multistep prediction and smoothing
- > estimators provide conditional probability density functions
- > provides means for easy control of the whole estimation process
- > easy addition of new estimators

Structure of NFT

- > probability density function (pdf's) classes
- > system classes
- > estimator classes
- > auxiliary classes

Miroslav Flídr *et.al.* Třeší 2006 -8/17- University of West Bohemia in Pilsen

Probability density function classes

Pdf's classes features

- random quantities represented as objects of corresponding pdf class
- > generic class defining mandatory interface of all pdf classes and making them distinguishable as pdf's within toolbox
- > pdf classes provide methods such as:
 - resetting and reading of pdf parameters,
 - versulation of pdf at arbitrary point of state space,
 - penerating of random samples, ...

Illustration of creation of Gaussian pdf object

$$p(\mathbf{x}) = \mathcal{N}\left\{ \begin{pmatrix} -1 \\ 5 \end{pmatrix}, \begin{pmatrix} 0.1 & 0 \\ 0 & 0.2 \end{pmatrix} \right\},\,$$

```
>> px = qpdf([-1;5],diaq([.1,.2]));
>> x = sample(px);
```

Třešť 2006 -9/17-Miroslav Flídr et.al. University of West Bohemia in Pilsen

Classes provided for system creation and handling

- \succ three classes for definition of multivariate functions $f(\cdot)$ and $h(\cdot)$
 - nfFunction general class defining interface for user defined functions
 - ⇒ nfSymFunction utilizes Symbolic toolbox ⇒ slow computations
 - nfLinFunction description of linear multivariate functions
- > several classes for various type of system (Non)Linear (Non)Gaussian with (Non)Additive noises

Illustration of creation and use of nonlinear system with additive noises

Miroslav Flídr et.al. Třeší 2006 -10/17- University of West Bohemia in Pilsen

Estimator classes

Estimators

Main task of the estimator classes

The estimator classes essentially implement algorithms necessary to obtain $p(\mathbf{x}_k|\mathbf{z}^k,\mathbf{u}_{k-1})$, $p(\mathbf{x}_k|\mathbf{z}^\ell,\mathbf{u}_{k-1})$ and even possibly $p(\mathbf{x}_k|\mathbf{z}^\ell,\mathbf{u}_{k-1})$, i.e. filtering, predictive and smoothing conditional pdf's, respectively.

Features of the general class estimator

- > its virtual methods sets the interface of actual estimator classes
- ➤ provides method estimate that controls the whole estimation process
 ⇒ the designer of the estimator doesn't need to care
- > estimator stores the data of multistep operations in dynamical list
- the lists can hold arbitrary content, however, they are primarily used to store conditional pdf's
- ➤ implements commonly used methods ⇒ decreases redundancy and makes possible easy future improvements

Miroslav Flídr *et.al.* Třešť 2006 -11/17- University of West Bohemia in Pilsen

Estimators currently implemented in NFT

Kalman filter	kalman
Extended Kalman filter	extkalman
Iterating Kalman filter	itekalman
Second order Kalman filter	seckalman
Gaussian sums filter	gsm
Particle filter	pf
Point mass filter	pmf
Divided difference filter 1st order	dd1
Divided difference filter 2nd order	dd2
Unscented Kalman filter	ukf

Illustration of creation and use of DD1 estimator object

```
>> filter = dd1(system,0);
>> [est,filter] = estimate(filter,z,[]);
```

Miroslav Flútr et.al. Třešť 2006 -12/17- University of West Bohemia in Pilsen

Example of NFT usage

Considered nonlinear Gaussian system

$$\begin{pmatrix} x_{1,k+1} \\ x_{2,k+1} \end{pmatrix} = \begin{pmatrix} x_{1,k}^2 \cdot x_{2,k} \\ x_{2,k} \end{pmatrix} + \boldsymbol{w}_k$$
$$z_k = (4\ 1) \begin{pmatrix} x_{1,k} \\ x_{2,k} \end{pmatrix} + v_k$$

The description of stochastic quantities

$$p(\mathbf{w}_k) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0.05 & 0 \\ 0 & 0.05 \end{bmatrix}\right)$$

$$p(v_k) = \mathcal{N}\left(0, \ 0.01\right)$$

$$p(\mathbf{x}_0) = \mathcal{N}\left(\begin{bmatrix} 0.9 \\ -0.85 \end{bmatrix}, \begin{bmatrix} 0.9 & 0 \\ 0 & 0.1 \end{bmatrix}\right)$$

$$p(\mathbf{x}_{0|-1}) = \mathcal{N}\left(\begin{bmatrix} 0.2 \\ -0.5 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$

Miroslav Flídr et.al. Třešť 2006 -13/17-University of West Bohemia in Pilsen

The task is to obtain two-step prediction $p(x_k|z^{k-2})$

```
definition of the random variables
  pw = qpdf([0;0], 0.05*eye(2));
  pv = qpdf(0,0.5);
  px0 = gpdf([0.9;-0.85],diag([0.09,0.1]));
  p_apr = gpdf([0.2;-0.5],diag([1,1]));
definition and simulation of the system
  f = nfSymfunction('[x1^2*x2+w1;x2+w2]',...
                             '','x1,x2','w1,w2');
  h = nfLinFunction([4 1],[],1,...
                             '', 'x1,x2', 'w1,w2')
  system = nlga(f,h,pw,pv,px0);
  [z,x,system]=simulate(system,zeros(1,40));
choise of the estimator and the estimation process itself
  filter = dd1(system, 2, p_apr);
```

Miroslav Flídr et.al. Třešť 2006 -14/17-University of West Bohemia in Pilsen

[est,filter] = estimate(filter,z,[]);

Plans

- > system description using transition and measurement pdf's
- > support for pdf's parameterized by state, measurement and time
- > possibility to define and use time variant systems
- > fast nonlinear functions prototyping using anonymous function handles
- > support for all estimators implemented in current stable version
- > possibility to automatically approximate pdf's
- > employing new MATLAB class system

Miroslav Flútr et.al. Třešť 2006 -15/17- University of West Bohemia in Pilsen

Already implemented features

- ✓ system description using transition and measurement pdf's
- ✓ support for pdf's parameterized by state, measurement and time
- ✓ possibility to define and use time variant systems
- ✓ fast nonlinear functions prototyping using anonymous function handles
- ✓ support for all estimators implemented in current stable version
- × possibility to automatically approximate pdf's
- ✓ employing new MATLAB class system

Miroslav Flídr et.al. Třešť 2006 -15/17- University of West Bohemia in Pilsen

Example of trajectory simulation using NFT v3

```
x_k \sim \mathcal{N}(x_k + u_k, 1), \quad z_k \sim \mathcal{N}(x_k^2, 0.7 \cdot k + 0.1), \quad x_0 \sim \mathcal{N}(0, 1)
preparation of pdf's parameters
  transMean = nfHandleFunction(...
        @(x,u,w,time) x + u, [1 1 0 0]);
  measMean = nfHandleFunction(...
        @(x,u,w,time) x^2, [1 0 0 0]);
  measVar = nfHandleFunction(...
        @(x,u,w,time) 0.7*time+0.1, [0 0 0 1]);
definition of pdf's
  initalPdf = nfGaussianRV(0,1)
  transPdf = nfGaussianRV(transMean,1);
  measPdf = nfGaussianRV(measMean,measVar);
definition and simulation of the system
```

Miroslav Flídr et.al. Třešť 2006 -16/17-University of West Bohemia in Pilsen

 $[z,x]=simulate(system,3,\{0\ 0\ 0\});$

system=nfPDFSystem(transPdf,measPdf,initalPdf);

Concluding remarks

Current contribution of the NFT

- provides all necessary tools for estimator design, testing and employment
- > the toolbox is easily extensible thanks to object oriented approach
- includes all the basic estimator implementing filtering, prediction and smoothing methods

Miroslav Flútr et.al. Třešť 2006 -17/17- University of West Bohemia in Pilsen