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Motivation

What is small area estimation?

Sample survey: 1500 - 2000 respondents in Czech RepublicČR

How to get precise estimates eg. for region of Beroun?

Small area:if the domain specific sample is not large enough to support direct
estimates of adequate precision

a) geographic area- state, province, county, municipality ...

b) socio-demographic group- specific age-sex-race group, or e.g.
unemployed people between 20-30 years etc.
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Motivation

How to increase precision of estimates in small areas?

to increase the number of respondents - expensive, impossible

to use SAE - employs a statistical model that "borrows strength" from
data collected in other small areas or at other time periods (also use
auxiliary data such as administrative data or data from census)
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Motivation

Types of indirect estimators:

data from different domain but not from another time period -domain
indirect

data from another time period but not from other domain -time indirect

data from different domain as well as another time period -domain and
time indirect

Auxiliary data available:

a) only at the aggregated level for each small area -area level model

b) for the individual units in the population -unit level model
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Motivation

Let’s suppose 2 data sets elaborated by INE

Spanish Labour Force Survey (SLFS) 2003 in the Canary Islands
n = 7728 records
2 provinces, 34 NUT4areas
D = 46 domains (areas crossed with sex)

aggregated data at domain level obtained from administrative registers

Variable Description

AREA NUT4 areas: 1-23

PROVINCE NUT3 areas: 1 for Las Palmas, 2 for Tenerife

RURAL degree of rurality: 1 if low, 2 if high

SEX sex categories: 1 if man, 2 if woman

AGE age categories: 1 for 16-24, 2 for 25-54, 3 for≥ 55

CLAIM unemployment claimant: 1 if yes, 2 if no

DOMAIN (d) sex-area categories: 1-46 for (1,1),...,(1,23),(2,1),...,(2,23)

UNEMPLOYED (y) unemployment status: 1 if yes, 0 if no

SEXAGECLAIM (x1) SEX∗AGE∗CLAIM categories: 1-12, for (1,1,1), (1,1,2),(1,2,1),...,(2,3,2)

CLUSTER (x2) PROVINCE∗RURAL categories: 1-4 for (1,1),(1,2),(2,1),(2,2)

WEIGHT (w) scaled and calibrated inverses of inclusion probabilities

Table 1. Description of the variables in the Labour Force data file. . – p.6/36



Motivation

If we denote

Pd – domain population, sd – domain sample

totals of variablesy, x1 andx2 in domaind are

Yd =
∑

j∈Pd

ydj , xkd =
∑

j∈Pd

xkdj , k = 1, 2,

and direct estimate ofYd and its variance estimator are

yd =
∑

j∈sd

wdjydj , σ2
d =

∑

j∈sd

wdj(wdj − 1)y2
dj .
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Motivation

By takingxt
d = (xt

1,d, x
t
2,d)

t we can formulate the area level linear mixed
model

yd = xt
dβ + ud + ed, d = 1, . . . , D

whereud ∼ N(0, σ2
u) anded ∼ N(0, σ2

d) are independent.
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Motivation

By takingxt
d = (xt

1,d, x
t
2,d)

t we can formulate the area level linear mixed
model

yd = xt
dβ + ud + ed, d = 1, . . . , D

whereud ∼ N(0, σ2
u) anded ∼ N(0, σ2

d) are independent.

Battesse et al. (1988)– proposed for the first time a nested-error regression
model in the setup of SAE

Searle et al. (1982)– provide a detailed description of these models

Ghosh and Rao (1994), Rao (2003)andJiang and Lahiri (2006)– discuss their
applications to SAE
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Motivation

EBLUP of totals of unemployed men - SLFS 2003-02
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The proposed model

Njuho and Milliken (2005)developed theory for a case where a factor has both
fixed and random effect level under a one-way ANOVA model

In this contribution their model is extended to a linear regression model with an
intercept being fixed in a part of the domains and being randomin the rest of
the domains.
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The proposed model

Njuho and Milliken (2005)developed theory for a case where a factor has both
fixed and random effect level under a one-way ANOVA model

In this contribution their model is extended to a linear regression model with an
intercept being fixed in a part of the domains and being randomin the rest of
the domains.

The supposed model can be written in terms of fixed effect(F ) part and
random effect(R) part in the following way:

(F ) ydj = xt
djγ + µd + edj , d = 1, . . . , DF , j = 1, . . . , Nd,

(R) ydj = xt
djγ + ud + edj , d = DF + 1, . . . , D, j = 1, . . . , Nd,
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The proposed model

Using matrix notation parts(F ) and(R) of the model can be written in the
form

yF = XF γ + diag
1≤d≤DF

(1Nd
)µ + eF =

[
XF diag

1≤d≤DF

(1Nd
)

] (
γ

µ

)
+ eF ,
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The proposed model

Using matrix notation parts(F ) and(R) of the model can be written in the
form

yF = XF γ + diag
1≤d≤DF

(1Nd
)µ + eF =

[
XF diag

1≤d≤DF

(1Nd
)

] (
γ

µ

)
+ eF ,

yR = XRγ+ diag
DF +1≤d≤D

(1Nd
)u+eR =

[
XR diag

DF +1≤d≤D
(1Nd

)

] [
γ

u

]
+eR .
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The proposed model

So that we can express the complete model in the form

(
yF

yR

)
=




XF diag

1≤d≤DF

(1Nd
)

XR 0NR×DF




(

γ

µ

)
+




0NF ×DR

diag
DF +1≤d≤D

(1Nd
)



u+

(
eF

eR

)
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The proposed model

So that we can express the complete model in the form

(
yF

yR

)
=




XF diag

1≤d≤DF

(1Nd
)

XR 0NR×DF




(

γ

µ

)
+




0NF ×DR

diag
DF +1≤d≤D

(1Nd
)



u+

(
eF

eR

)

or more simply

y = Xβ + Zu + e ,

wherey = yN×1, X = XN×(p+DF ), β = β(p+DF )×1,

Z = ZN×DR
, u = uDR×1 and e = eN×1 with N =

∑D
d=1 Nd.
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The proposed model

Assumptions:

rank(X) = p + DF

u = uDR×1 ∼ N (0,Σu) ande = eN×1 ∼ N (0,Σe) are independent

Σu = σ2
uIDR

Σe = diag

[
σ2

eF
diag

1≤d≤DF

(W−1
d ), σ2

eR
diag

DF +1≤d≤D
(W−1

d )

]

andW d = diag(wd1, . . . , wdNd
)Nd×Nd

, d = 1, . . . , D, is the
corresponding part of the matrix

W N = diag(w11, . . . , wD,ND
)N×N ,

w11 > 0, . . . , wD,ND
> 0 known.
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The proposed model

Assumptions:

rank(X) = p + DF

u = uDR×1 ∼ N (0,Σu) ande = eN×1 ∼ N (0,Σe) are independent

Σu = σ2
uIDR

Σe = diag

[
σ2

eF
diag

1≤d≤DF

(W−1
d ), σ2

eR
diag

DF +1≤d≤D
(W−1

d )

]

andW d = diag(wd1, . . . , wdNd
)Nd×Nd

, d = 1, . . . , D, is the
corresponding part of the matrix

W N = diag(w11, . . . , wD,ND
)N×N ,

w11 > 0, . . . , wD,ND
> 0 known.

Thus

y ∼ N (Xβ, V ) with V = ZΣuZt + Σe = diag(V 1, . . . ,V D).
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The proposed model

Whenσ2
eF

> 0, σ2
eR

> 0 andσ2
u > 0 are known,

the best linear unbiased estimator (BLUE) ofβ = (β1, . . . , βp+DF
)t is

β̂ = (XtV −1X)−1XtV −1y

and the best linear unbiased predictor (BLUP) ofu = (u1, . . . , uDR
)t is

û = ΣuZtV −1
(
y − Xβ̂

)
.
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The proposed model

Whenσ2
eF

> 0, σ2
eR

> 0 andσ2
u > 0 are known,

the best linear unbiased estimator (BLUE) ofβ = (β1, . . . , βp+DF
)t is

β̂ = (XtV −1X)−1XtV −1y

and the best linear unbiased predictor (BLUP) ofu = (u1, . . . , uDR
)t is

û = ΣuZtV −1
(
y − Xβ̂

)
.

The parametric space of the model is

Θ = {θt = (βt, σ2
u, σ2

eF
, σ2

eR
); β ∈ Rp+DF , σ2

u ≥ 0, σ2
eF

> 0, σ2
eR

> 0}

and MLE of the unknown parameters can be found e.g. by the Fisher-Scoring

algorithm.
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BLU predictor of mean of a small area

Now let’s consider a finite population ofN = NF + NR elements following
the introduced model.

From the population a sample of sizen with nd elements in aread,

n =
∑D

d=1 nd, is selected.

We can reorder the population so that

y = (yt
s, y

t
r)

t,

where
ys – vector ofn observed elements

and
yr – vector ofN − n unobserved elements.

In this notation we can write

E[y] = Xβ, V = V [y] =

(
V ss V sr

V rs V rr

)
.
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BLU predictor of mean of a small area

We are interested in the estimation of the mean of the small aread, i.e.

Y d =
1

Nd

Nd∑

j=1

ydj = aty,

whereat = 1
Nd

(
0

t
N1

, . . . ,0t
Nd−1

,1t
Nd

,0t
Nd+1, . . . ,0

t
ND

)
and

0
t
m = (0, . . . , 0)1×m.
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BLU predictor of mean of a small area

We are interested in the estimation of the mean of the small aread, i.e.

Y d =
1

Nd

Nd∑

j=1

ydj = aty,

whereat = 1
Nd

(
0

t
N1

, . . . ,0t
Nd−1

,1t
Nd

,0t
Nd+1, . . . ,0

t
ND

)
and

0
t
m = (0, . . . , 0)1×m.

From the general theorem of prediction it follows

Ŷ
blup

d = at
sys + at

r

[
Xrβ̂ + V rsV

−1
ss (ys − Xsβ̂)

]
,

where
β̂ = (Xt

sV
−1
ss Xs)

−1Xt
sV

−1
ss ys

.
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BLU predictor of mean of a small area

In our case

Ŷ
blup

d = Xdβ̂ + fd

(
Ŷ d − X̂dβ̂

)

for 1 ≤ d ≤ DF
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BLU predictor of mean of a small area

In our case

Ŷ
blup

d = Xdβ̂ + fd

(
Ŷ d − X̂dβ̂

)

for 1 ≤ d ≤ DF and

Ŷ
blup

d = (1−fd)

[
Xdβ̂ + γw

d

(
Ŷ

direct

d − X̂
direct

d β̂

)]
+fd

[
Ŷ d + (Xd − X̂d)β̂

]

for DF + 1 ≤ d ≤ D,
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BLU predictor of mean of a small area

In our case

Ŷ
blup

d = Xdβ̂ + fd

(
Ŷ d − X̂dβ̂

)

for 1 ≤ d ≤ DF and

Ŷ
blup

d = (1−fd)

[
Xdβ̂ + γw

d

(
Ŷ

direct

d − X̂
direct

d β̂

)]
+fd

[
Ŷ d + (Xd − X̂d)β̂

]

for DF + 1 ≤ d ≤ D,

whereŶ
direct

d = 1
wd

∑nd

j=1 wdjydj , X̂
direct

d = 1
wd

∑nd

j=1 wdjx
t
dj ,

γw
d =

σ2

u

σ2
u
+

σ2
eR

wd

, Xd = 1/Nd

∑Nd

j=1 xt
dj , X̂d = 1/nd

∑nd

j=1 xt
dj ,

Ŷ d = 1/nd

∑nd

j=1 ydj andfd = nd/Nd.
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BLU predictor of mean of a small area

In our case

Ŷ
blup

d = Xdβ̂ + fd

(
Ŷ d − X̂dβ̂

)

for 1 ≤ d ≤ DF and

Ŷ
blup

d = (1−fd)

[
Xdβ̂ + γw

d

(
Ŷ

direct

d − X̂
direct

d β̂

)]
+fd

[
Ŷ d + (Xd − X̂d)β̂

]

for DF + 1 ≤ d ≤ D,

whereŶ
direct

d = 1
wd

∑nd

j=1 wdjydj , X̂
direct

d = 1
wd

∑nd

j=1 wdjx
t
dj ,

γw
d =

σ2

u

σ2
u
+

σ2
eR

wd

, Xd = 1/Nd

∑Nd

j=1 xt
dj , X̂d = 1/nd

∑nd

j=1 xt
dj ,

Ŷ d = 1/nd

∑nd

j=1 ydj andfd = nd/Nd.

EstimatorŶ
eblup

d of Y d is obtained by substituting variance components by their

MLE’s
. – p.17/36



MSE of EBLUP

The mean squared error ofŶ
eblup

d is estimated by using the following formula

mse(Ŷ
eblup

d ) = g1d(σ̂) + g2d(σ̂) + 2g3d(σ̂) + g4d(σ̂) − gd5(σ̂).

Prasad and Rao (1990), Das, Jiang and Rao (2001)
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MSE of EBLUP

g1d(σ) =





0 if 1 ≤ d ≤ DF ,

(1 − fd)2(1 − γw
d

)σ2
u if DF + 1 ≤ d ≤ D,

g2d(σ) =






(1 − fd)2X
∗

dPsX
∗t

d if 1 ≤ d ≤ DF ,

(1 − fd)2
(

X
∗

d − γw
d

X̂
direct

d

)
Ps

(
X

∗

d − γw
d

X̂
direct

d

)t

if DF + 1 ≤ d ≤ D,

g3d(σ) = 0 if 1 ≤ d ≤ DF ; otherwise

g3d(σ) = (1 − fd)2

(
σ2

u +
σ2

eR

wd

)−3
1

w2
d

{
σ4

eRV(σ̂2
u)

}
− 2σ2

uσ2
eRcov(σ̂2

u, σ̂2
eR) + σ4

uV(σ̂2
eR),

g4d(σ) =






σ2

eF
(Vd−νd)

N2

d

if 1 ≤ d ≤ DF ,

σ2

eR
(Vd−νd)

N2

d

if DF + 1 ≤ d ≤ D,

whereVd =
∑Nd

j=1 w−1
dj

, νd =
∑nd

j=1 w−1
dj

.
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Simulation experiment

The true model is a model with fixed effects

We consider the proposed model with

D = 30 small areas, DF = 3 small areas with fixed effect,

Nd = 100, 1 ≤ d ≤ D, totals of units in each area.
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Simulation experiment

The true model is a model with fixed effects

We consider the proposed model with

D = 30 small areas, DF = 3 small areas with fixed effect,

Nd = 100, 1 ≤ d ≤ D, totals of units in each area.

Algorithm:

1. Population generation

MatricesXF , XR. Set

ad = 1, bd = d + DR + 1 for d = 1, . . . , DF

ad = 1, bd = d − DF + 1 for d = DF + 1, . . . , D

and ford = 1, . . . , D, j = 1, . . . , nd, do

xdj = (bd − ad)
j

1 + nd
+ ad.
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Simulation experiment

Weights. Dowdj = x−ℓ
dj with ℓ = 1/2 for all d, j.
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Simulation experiment

Weights. Dowdj = x−ℓ
dj with ℓ = 1/2 for all d, j.

Target variabley. Ford = 1, . . . , DF , j = 1, . . . , nd, take

γ = 1, µd = 12 + d and σ2
eF

= 2

and generate

ydj = xdjγ + µd + w
−1/2
dj edj , whereedj ∼ N (0, σ2

eF
).
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Simulation experiment

Weights. Dowdj = x−ℓ
dj with ℓ = 1/2 for all d, j.

Target variabley. Ford = 1, . . . , DF , j = 1, . . . , nd, take

γ = 1, µd = 12 + d and σ2
eF

= 2

and generate

ydj = xdjγ + µd + w
−1/2
dj edj , whereedj ∼ N (0, σ2

eF
).

Ford = DF + 1, . . . , D, j = 1, . . . , nd, take

γ = 1, σ2
u = 1 and σ2

eR
= 1

and generate

ydj = xdjγ + ud + w
−1/2
dj edj , whereud ∼ N (0, σ2

u), edj ∼ N (0, σ2
eR

).
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Simulation experiment

2. Sample extraction

From each small area we extract a sample of sizend, where

nd =

{
c · q for 1 ≤ d ≤ DF ,

q for DF + 1 ≤ d ≤ D
and c = 2, q = 5 .
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Simulation experiment

2. Sample extraction

From each small area we extract a sample of sizend, where

nd =

{
c · q for 1 ≤ d ≤ DF ,

q for DF + 1 ≤ d ≤ D
and c = 2, q = 5 .

3. Parameter estimation and prediction

From the simulated population we calculate

the population mean of each aread:

Y d =
1

Nd

Nd∑

j=1

ydj

.
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Simulation experiment

From the extracted sample we calculate

the MLEs β̂, σ̂2
u, σ̂2

e

the EBLUP Ŷ
eblup

d of the mean of each aread

The MSE estimator msed(Ŷ
eblup

d )
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Simulation experiment

From the extracted sample we calculate

the MLEs β̂, σ̂2
u, σ̂2

e

the EBLUP Ŷ
eblup

d of the mean of each aread

The MSE estimator msed(Ŷ
eblup

d )

Under the assumptionDF = 0

the MLEs β̂
∗
, σ̂2∗

u , σ̂2∗
e

the EBLUP Ŷ
eblup∗

d

The MSE estimator mse(Ŷ
eblup∗

d )
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Simulation experiment

4. Repetition and performance measures

Steps 1-3 are repeatedK = 10000 times obtaining thus in each iteration

Y
(k)

d , Ŷ
eblup(k)

d and Ŷ
eblup∗(k)

d .
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Y
(k)
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d and Ŷ
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Calculated performance measures:

MEANd =
1

K
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k=1
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(k)
d , meand =

1

K
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k=1
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K
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d ,
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Simulation experiment

4. Repetition and performance measures

Steps 1-3 are repeatedK = 10000 times obtaining thus in each iteration

Y
(k)

d , Ŷ
eblup(k)

d and Ŷ
eblup∗(k)

d .
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K
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d , meand =
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K

K∑
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d =
1

K

K∑

k=1

Ŷ
eblup∗(k)

d ,

BIASd = meand − MEANd, BIAS∗

d = mean∗

d − MEANd,

MSEd =
1

K

K∑

k=1

(
Ŷ

eblup(k)

d − Y
(k)
d

)2

, MSE∗

d =
1

K

K∑

k=1

(
Ŷ

eblup∗(k)

d − Y
(k)
d

)2
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Simulation experiment

4. Repetition and performance measures

Steps 1-3 are repeatedK = 10000 times obtaining thus in each iteration

Y
(k)

d , Ŷ
eblup(k)

d and Ŷ
eblup∗(k)

d .
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K
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d ,

BIASd = meand − MEANd, BIAS∗

d = mean∗

d − MEANd,

MSEd =
1

K

K∑

k=1

(
Ŷ

eblup(k)

d − Y
(k)
d

)2

, MSE∗

d =
1

K

K∑

k=1

(
Ŷ

eblup∗(k)

d − Y
(k)
d

)2

,

msed =
1

K

K∑

k=1

mse(Ŷ
eblup(k)

d ), mse∗d =
1

K

K∑

k=1

mse(Ŷ
eblup∗(k)

d ).
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Simulation experiment
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Figure 2. MEANd andmeand values forµ = (13, 14, 15) andDF = 3.
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Simulation experiment
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Figure 3. BIASd andBIAS∗
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values forµ = (13, 14, 15) andDF = 3.
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Simulation experiment

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MSE

MSE∗

True model: DF = 3

Figure 4. MSEd andMSE∗

d
(right) values forµ = (13, 14, 15) andDF = 3.
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Simulation experiment
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Figure 5. MSEd, msed (left) andMSE∗
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, mse∗

d
(right) values forµ = (13, 14, 15) and

DF = 3.
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Simulation experiment

The true model is a model without fixed effects

We repeat the simulation for the case that the population is generated from the

model without fixed effects, i.e. withDF = 0.
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Simulation experiment
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Figure 6. BIASd andBIAS∗

d
values forµ = (3, 4, 5) andDF = 0.
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Simulation experiment
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d
(right) values forµ = (3, 4, 5) andDF = 0.
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Simulation experiment
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(right) values forµ = (3, 4, 5) andDF = 0.
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Application to the Labour Force Survey

We apply the introduced methodology to the sample of SLFS introduced in the
motivation.

Target: to estimate domain totals of unemployed people withEBLUP estimators

We consider 5 cases:

Case 1 - DF = 0

Case 2 - DF = 2

Case 3 - DF = 8

Case 4 - DF = 17

Case 5 - DF = 23
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Application to the Labour Force Survey

d EB 1 CV 1 EB 2 CV 2 EB 3 CV 3 EB 4 CV 4 EB 5 CV 5
1 14520 9,37 14585 9,35 14387 9,87 14333 9,52 14232 9,54
2 10019 11,20 10035 11,20 9990 11,72 10039 11,22 9773 11,44
3 4496 12,59 4492 12,58 4450 13,29 4476 12,68 4465 12,64
4 2676 21,32 2675 21,28 2716 21,94 2721 21,03 2719 20,92
5 1204 43,88 1204 43,76 1266 43,60 1264 41,91 1268 41,56
6 2288 18,54 2289 18,49 2334 18,99 2344 18,16 2347 18,03
7 1728 22,00 1726 21,98 1712 23,21 1720 22,18 1714 22,13
8 824 46,63 824 46,52 850 47,30 875 44,13 877 43,75
9 539 62,24 540 62,03 563 50,33 554 60,77 554 60,40
10 1788 47,38 1789 47,23 1824 39,22 1830 46,44 1835 46,07
11 1184 21,86 1184 21,81 1177 18,58 1193 21,79 1193 21,67
12 336 87,54 335 87,62 340 73,01 371 79,67 368 79,75
13 1065 34,40 1064 34,36 1070 28,93 1114 33,06 1111 32,96
14 1402 21,07 1401 21,04 1411 17,70 1402 21,16 1397 21,12
15 219 187,24 220 186,34 228 152,41 289 142,99 293 140,26
16 993 28,84 994 28,76 1003 24,12 1011 28,45 1013 28,24
17 182 122,14 181 122,22 193 97,14 217 102,82 216 102,68
18 537 42,51 536 42,51 533 36,21 529 39,69 535 42,70
19 453 44,07 453 43,99 467 36,15 461 39,85 501 39,97
20 1686 28,43 1686 28,38 1680 24,12 1688 26,12 1715 27,99
21 441 42,86 441 42,73 459 34,83 452 38,44 493 38,45
22 211 106,92 211 106,57 215 88,70 217 96,02 230 98,58
23 105 94,15 104 94,21 103 81,42 103 88,10 107 92,59
Total 48896 1157 48969 1155 48971 993 49203 1046 48957 1053

Table 2. EBLUP and CV estimates of totals of unemployed men
in the SLFS 2003-02 of Canary Islands for cases 1-5. . – p.34/36



Conclusions

In the simulation experiment it is shown that if the proposedmodel
(DF = 3) is true and the standard linear mixed model (DF = 0) is used,
then a severe lack of precision is achieved.

However if the true model is the standard linear mixed model (DF = 0),
then the reduction of precision because of using the proposed model
(DF = 3) is quite moderate.

An application to real data shows that the best model is foundby using a
model with both fixed and random effects.
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