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Abstract

The paper considers generalized logistic regression models which include the classi-
cal model with binary responses governed by the Bernoulli law as well as the models
with responses governed by general discrete or continuous laws depending on the logis-
tic regression function. It introduces a new median estimator of the logistic regression
parameters employing smoothed data in the discrete case. Consistency and asymptotic
normality theorems are presented for this estimator. its sensitivity to contaminations of
the logistic regression data is extensively studied by simulations and compared with the
sensitivity of some robust estimators previously introduced to logistic regression. The me-
dian estimator is demonstrated to be more robust than these estimators for higher levels
of contamination.
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1 Introduction

In this paper we study estimation of the parameter β0 ∈ Rd in the generalized logis-
tic regression where independent observations Y1, ..., Yn depend on β0 and regressors
x1, ..., xn, all from Rd, and are distributed by Fπ(xT

1 β0),...,Fπ(xT
n β0) for the logistic function

π (t) = et/ (1 + et) and a given family (Fπ : π ∈ (0, 1)) of distribution functions on R. For
the Bernoulli distribution functions Fπ(y) with jumps 1 − π and π at y = 0 and y = 1

∗This work was supported by the grants DGES PB2003-892, AV CR 107 5403 and MSMT 1M0572
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this reduces to the classical logistic regression with binary observations Y1, ..., Yn taking
on value 1 with probabilities π

(
xT

1 β0

)
, ...., π

(
xT

nβ0

)
and value 0 with the complementary

probabilities 1− π
(
xT

1 β0

)
, ...., 1− π

(
xT

nβ0

)
.

We propose the median estimator

β̂n = arg min
β

n∑
i=1

∣∣Yi −m
(
xT

i β
)∣∣ (1.1)

where m (π) is the median of the distribution Fπ. This estimator was not previously
considered in the logistic regression because for the most important Bernoulli model (as
well as for all other discrete logistic regression models) the median function m (π) =
F−1

π (1/2) is not sensitive to small variations of the parameter π ∈ (0, 1) . Therefore the
classical median estimator (1.1) cannot be consistent in these models. The originality of
our approach consists in the random transformation of discrete integer-valued observations
Yi by the formula

Ỹi = Yi + Wi, 1 ≤ i ≤ n (1.2)

where W1, ..., Wn are mutually (and also on Y1, ..., Yn) independent random variables uni-
formly distributed on the interval (0, 1). All discrete logistic regression data are supposed
to be standardly transformed in this manner. This transformation is statistically suffici-

ent since the original observations Yi can be recovered from Ỹi as the integer parts
[
Ỹi

]
.

At the same time the median functions m̃ (π) = F̃−1
π (1/2) of the transformed observati-

ons (1.2) are already one-one on the interval (0, 1). We prove a consistency theorem and
an asymptotic normality theorem for the median estimators (1.1) in the general logistic
regression models under consideration.

It is known (cf. e. g. Hampel et al (1986), Yohai (1987), Jurečková and Sen (1996),
Zwanzig (1997)) that the median estimator of parameters of linear and non-linear regres-
sion is robust with respect to contamination of observations from the assumed statistical
models. This naturally leads to the conjecture that the median estimator proposed in this
paper for the general logistic regression is robust too.

In this paper, and also in Hobza et al (2005), we explicitly evaluated in some simple
examples the estimates (1.1) and compared them on simulated contaminated as well
as noncontaminated data with the MLE and/or some robust estimators tailor-made for
the logistic regression, demostrating in this manner the acceptability of the robustness
conjecture stated above.

In particular, we compared our median estimator with the L1-estimator of Morgen-
thaler (1992) and with the robust estimator of Bianco and Yohai (1996). Our simulations
demonstrated that for heavier contaminations and larger sample sizes the robustness of
our estimator dominates these two.
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2 Models and Estimators

A large class of statistical models assumes independent real valued observations Y1, ..., Yn

of the form
Yi ∼ Fu(xT

i β0) (y) , 1 ≤ i ≤ n. (2.1)

Here xi ∈ Rd are vectors of explanatory variables (regressors), β0 ∈ Rd is a vector of true
parameters and xT β =

∑d
j=1 xjβj denotes the scalar product of x = (x1, ..., xd)

T ∈ Rd and

β = (β1, ..., βd)
T ∈ R. Further, u : R 7−→Θ is a smooth mapping and F = {Fθ : θ ∈ Θ} a

family of distribution functions on R with an interval parameter space Θ ⊆ R. The basic
statistical problem related to these models is to find mappings β̂n = β̂n (Y1, ..., Yn) from
Rn into Rd which can be used to estimate the unknown parameters β0 on the basis of
observations (2.1). Various asymptotic or non-asymptotic properties are usually required

from estimators β̂n.
The desirable properties are often found in the class of so-called least absolute deviation

estimators (LAD-estimators, or briefly L1−estimators) defined by

β̂n = arg min
β

n∑
i=1

∣∣Yi − µ
(
xT

i β
)∣∣ . (2.2)

From the extensive literature dealing with these estimators one can mention Koenker and
Bassett (1978), Richardson and Bhattacharyya (1987), Pollard (19991), Morgenthaler
(1992), Chen, Zhao and Wu (1993), Jurečková and Procházka (1994), Knight (1998),
Arcones (2001), Liese and Vajda (1999, 2003, 2004) and others cited in these papers.

The L1-estimators are usually used in the linear regression where the observations

Yi = xT
i β0 + Wi, 1 ≤ i ≤ n (2.3)

depend on independent additive zero-mean random errors Wi or in the nonlinear regression
where (2.3) is replaced by more general formula

Yi = µ
(
xT

i β0

)
+ Wi, 1 ≤ i ≤ n (2.4)

for a given smooth function µ : R 7−→ R. If µ is the identity mapping µ (y) = y, then the
model (2.4) reduces to the linear regression (2.3). In the linear regression the L1−estimator
(2.2) takes on the simple form

β̂n = arg min
β

n∑
i=1

∣∣Yi − xT
i β

∣∣ . (2.5)

This estimator was considered e.g. by Pollard (1991). It is often extended to the class of
Lp−estimators with p ≥ 1 where

β̂n = arg min
β

n∑
i=1

∣∣Yi − xT
i β

∣∣p , (2.6)
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see e. g. Arcones (2001).
The L1-estimator (2.2) is sometimes applied also beyond the linear and nonlinear

regression. For example Morgenthaler (1992) used it for more general models of the type
(2.1) with

µ (y) = m (u (y)) (2.7)

where m : Θ 7−→ R is the mean function of the family F defined for every θ ∈ Θ by

m (θ) =

∫
ydFθ (y) . (2.8)

He considered also the Lp-generalizations

β̂n = arg min
β

n∑
i=1

∣∣Yi − µ
(
xT

i β
)∣∣p (2.9)

similar to (2.6) for µ (y) given by (2.7) and (2.8).
Koenker and Bassett (1987), Jurečková and Procházka (1994), Liese and Vajda (2003,

2004) and many other authors generalized the above mentioned L1-estimators in other

way. Namely, instead of the L1-criterion L1 (y) = |y| they considered the L̃α−criteria
where

L̃α (y) = |y| (αI (y > 0) + (1− α) I (y < 0)) ,

for the indicator function I(.) and a fixed α ∈ (0, 1) . Obviously, the symmetric L̃1/2 (y) =
1
2
|y| defines the same estimator as L1 (y) = |y| .

In this paper we are interested in the special L1-estimators (2.2) called median es-
timators. They are defined by (2.2) for the function µ (y) given formally by the same
composition formula as (2.7) but with m : Θ 7→ R being the median function of the
family F . This function is for every θ ∈ Θ defined by

m (θ) = med(Fθ) = F−1
θ (1/2) = inf {y ∈ R : Fθ (y) ≥ 1/2} . (2.10)

Our attention is restricted to the important subclass of the models (2.1) where

Yi ∼ Fπ(xT
i β0) (y) , 1 ≤ i ≤ n (2.11)

for xi and β0 the same as in (2.1) but for the particular logistic regression function

π (t) =
et

1 + et
for every t ∈ R (2.12)

and an arbitrary family F = {Fπ : π ∈ (0, 1)} of distribution functions on R. The models
given by (2.11), (2.12) are the general logistic regression models. In these models π =
π

(
xT

i β0

)
represents a nonlinear logistic regression and the distribution function Fπ spe-

cifies the random response to this regression, see e.g. Andersen (1990), Agresti (2002),
Pardo et al (2006) and others cited there. Note that here and in the sequel we use the
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same symbol π for the mapping π (t) given by (2.12) and for the parameter of the random
response family F = {Fπ : π ∈ (0, 1)} . We hope that this will not lead to a confusion.

Important special logistic regression models are obtained if for all π ∈ (0, 1) the random
response functions Fπ (y) are either a right-continuous distribution functions with jumps

pπ (k) = Fπ (k)− Fπ (k − 0) , k = 0, 1, .... (2.13)

summing up to 1, or continuous piecewise differentiable distribution functions with densi-
ties

fπ (y) =
dFπ (y)

dy
, y ∈ R. (2.14)

In the first case we speak about discrete models and in the second case about continuous
models.

For example, the Bernoulli reponse functions

Fπ (y) = (1− π) I (0 ≤ y < 1) + I (y ≥ 1) , π ∈ (0, 1) (2.15)

with the jumps (2.13) given by

pπ (0) = 1− π, pπ (1) = π, pπ (k) = 0 for k > 1 (2.16)

define the discrete Bernoulli models (2.11). The discrete geometric response functions

Fπ (y) =
∞∑

k=0

(
1− πk+1

)
I (k ≤ y < k + 1) , π ∈ (0, 1) (2.17)

with the jumps (2.13) given by

pπ (k) = (1− π) πk, k = 0, 1, .... (2.18)

define the discrete geometric models (2.11). The exponential response functions

Fπ (y) = 1− exp {−πy/(1− π)} I (y > 0) , π ∈ (0, 1) (2.19)

with the densities
fπ (y) =

π

1− π
exp {−πy/(1− π} I (y > 0) (2.20)

define the continuous exponential models (2.11). If the response distributions considered
in (2.11) are normal with the densities

fπ (y) =
1√
2π

exp

{
−(y − ln π)2

2

}
, π ∈ (0, 1) (2.21)

then we speak about normal logistic regression models.
The main object of interest of this paper can now be formally defined as follows.
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Definition 2.1 The median estimator β̂n of the true parameter β0 in the general logistic
regression model given by (2.11) and (2.12) is defined by the formula

β̂n = arg min
β

n∑
i=1

∣∣Yi −m
(
π

(
xT

i β
))∣∣ (2.22)

where m (π) is for every π ∈ (0, 1) given by

m (π) = med (Fπ) = F−1
π (1/2) = inf {y ∈ R : Fπ (y) ≥ 1/2} . (2.23)

The asymptotic theory of the median estimators is presented in this paper for the
general logistic regression model (2.11) of arbitrary dimension d ∈ {1, 2, ...} . However the
applications and simulations we study mainly for the Bernoulli discrete logistic regression
models of the small dimensions d ∈ {1, 2} . The Bernoulli models are typical and the small
dimensions are simpler and transparent enough to provide a good insight into the general
theory.

An obvious condition of applicability of the median estimators (2.22) is the sensitivity
of the median function (2.23) to the change of parameter π ∈ (0, 1) . This sensitivity
means the strict monotonicity of the median function m (π) on its domain (0, 1). If m (π)
is constant on an interval (π1, π2) then m

(
π

(
xT

i β
))

will not distinguish between β0 and

β̃0 with both π
(
xT

i β0

)
and π

(
xT

i β̃0

)
belonging to this interval.

For example, in the Bernoulli model (2.15), (2.16) we have the piecewise constant

m (π) = I (π > 1/2) =

{
0 if π ≤ 1/2

1 if π > 1/2.
(2.24)

Similarly, in the geometric model (2.17), (2.18) we have

m (π) = k if

(
1

2

)1/k

< π ≤
(

1

2

)1/(k+1)

(2.25)

so that m (π) = 0 for all π ∈ (0, 1/2] , m (π) = 1 for all π ∈ (
1/2, 1/

√
2
]
, etc.

The above required strict monotonicity of m (π) in the regression models with discrete
responses is achieved if we replace these models by their standard modifications defined
as follows.

Definition 2.2. The standard modification of a discrete logistic regression model (2.11)
with arbitrary jumps (2.13) is the continuous logistic regression model

Ỹi = Yi + Wi, 1 ≤ i ≤ n, (2.26)

where Wi are an independent noise random variables uniformly distributed on the interval
(0, 1) and independently added to the discrete observations Yi if the original model (2.11).
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It is clear that the probability density function of the continuous observations Ỹi are

fi (ỹ) =
∞∑

k=0

pi (k) I (k ≤ ỹ < k + 1) (2.27)

where
pi (k) = pπ(xT

i β0) (k) , k = 0, 1, ..... (2.28)

are the probabilities of observations Yi in the original model (2.11).

The continuously distributed observations Ỹi of (2.26) can be viewed as obtained by
transmission of the original discrete observations Yi via an additional observation channel
with additive noise Wi. Obviously, each transmission of observations through a channel
represents a stochastic transformation which cannot increase the statistical information
about β0 (cf. e.g. Vajda (1973)). This information typically decreases but in special chan-
nels it can be preserved. One of such channels is considered in (2.26). Namely, in (2.26)

the channel inputs Yi can be recovered from the outputs Ỹi by the formula

Yi =
[
Ỹi

]
a.s., 1 ≤ i ≤ n, (2.29)

where [ỹ] ∈ {−1, 0, 1...} denotes the whole part of ỹ ∈ R, i.e.,

[ỹ] ≤ ỹ < [ỹ] + 1. (2.30)

In other words, the standard modification of a discrete logistic regression model preserves
the information contained in the observations.

By (2.26), (2.27) and (2.11), the standardly modified discrete logistic regression model
is of the form

Ỹi ∼ F̃π(xT
i β0) (y) , 1 ≤ i ≤ n (2.31)

where π
(
xT

i β0

)
is the same as in (2.11) but the response family F̃ =

{
F̃π : π ∈ (0, 1)

}
is

continuous with the densities

f̃π (y) =
∞∑

k=1

pπ (k) I (k ≤ y < k + 1) (2.32)

for the discrete probabilities pπ (k) of the original model introduced in (2.13).
For example, the standardly modified Bernoulli model with the discrete probabilities

(2.16) is the continuous model

Yi ∼ fi (y) =
(
1− π

(
xT

i β0

))
I(0 ≤ y < 1) + π

(
xT

i β0

)
I (1 ≤ y < 2) , (2.33)

and the standardly modified geometric model with the discrete probabilities (2.18) is the
continuous model

Yi ∼ fi (y) =
(
1− π

(
xT

i β0

)) ∞∑

k=0

π
(
xT

i β0

)k
I(k ≤ y < k + 1). (2.34)
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By (2.33), the standardly modified Bernoulli model has the response distribution function

Fπ (y) = (1− π) y I (0 < y ≤ 1) + [1− π + π (y − 1)] I (1 < y ≤ 2) (2.35)

and consequently the median function

m (π) = 1 +
π − 1/2

π ∨ (1− π)
= 1 +

π − 1/2

1/2 + |π − 1/2| , π ∈ (0, 1) . (2.36)

This median function is strictly increasing on (0,1) with the bell-shaped continuous posi-
tive derivative

m′ (π) =
1

2
[
π2 ∨ (1− π)2] .

Note that here and in the sequel,

a ∨ b = max {a, b} and a ∧ b = min {a, b} . (2.37)

For the standardly modified geometric model the response distribution function

Fπ (y) =
∞∑

k=0

[
1− πk + πk (1− π) (y − k)

]
I (k < y ≤ k + 1) (2.38)

is piecewise linear connecting the planar points

(
k; Fπ (k − 1)) = (k; 1− πk

)
for k = 0, 1, ...

Therefore the median function is

m (π) = k +
πk − 1/2

πk (1− π)
for

(
1

2

)1/k

< π ≤
(

1

2

)1/(k+1)

(2.39)

where the term
πk − 1/2

πk (1− π)

continuously and strictly increases from 0 to 1 for 1/2 ≤ πk ≤ (1/2)k/(k+1) . Therefore the
median function m (π) is continuous and strictly increasing in the domain π ∈ (0, 1) .

3 Asymptotic for general median estimator

In this section we study the asymptotic of the median estimator from Definition 2.1.
Remind that this estimator defined by the formula

β̂n = arg min
β

n∑
i=1

∣∣Yi −m
(
π

(
xT

i β
))∣∣ (3.1)
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estimates the true parameter β0 ∈ Rd of the general logistic regression with independent

responses
(
Yi ∼ Fπ(xT

i β0) : 1 ≤ i ≤ n
)

to given regressors (xi : 1 ≤ i ≤ n) . Here π (t) =

et/ (1 + et) is a mapping R 7−→ (0, 1) and m (π) = med (Fπ) is a mapping (0, 1) 7−→
R depending on a given class of distribution functions (Fπ : π ∈ (0, 1)) specifying the
responses.

Our results will be based on the theorems of Liese and Vajda (1999, 2003, 2004)
concerning asymptotics of general M−estimators of parameters in structural statistical
models. Let us start with conditions of consistency for the estimator (3.1). Liese and
Vajda (1999) studied the consistency of more general estimators

βn = arg min
β

n∑
i=1

ρ
(
Yi − τ

(
u

(
xT

i β
)))

(3.2)

where Yi are observations from the general model (2.1) and ρ : R 7−→ (0,∞] and τ : Θ 7−→
R are given functions. We see that our median estimator (3.1) is a special case of (3.2)
for ρ (y) = |y|, Θ = (0, 1) and τ = m.

Adapted to the present situation, the consistency conditions of Theorem 2 and Lemmas
8 and 9 in Liese and Vajda (1999) are as follows.

(c1) The regressors x1, x2, ..... are from a compact set X ⊂ Rd and the probability
measures

Qn =
1

n

n∑
i=1

δxi
(3.3)

tend weakly for n →∞ to a probability measure Q on Borel subsets of X .

Remark 3.1. If the regressors x1, x2, ..., xn are independently generated by a probability
measure Q on the Borel subsets of a compact set X ⊂ Rd then (c1) holds almost surely for
these X and Q. For example, if the dimension d = 1 then, by the Glivenko theorem, the
empirical probability measure (3.3) tends almost surely to Q in the Kolmogorov distance.
But the convergence in this distance implies the weak convergence required by (c1).

(c2) The smallest eigenvalue of the matrix

Σ =

∫

X

xxT dQ (x) (3.4)

is positive. Hence for every β ∈Rd different from β0

Q
(
x ∈X : xT (β − β0) 6= 0

)
> 0. (3.5)
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(c3) Distributions functions Fπ (y) are continuous in both arguments π ∈ (0, 1) and
y ∈ (0,∞) . Moreover, for each π ∈ (0, 1) the function Fπ(y) has a density fπ (y) =
dFπ (y) /dy and

+∞∫

−∞

|y| fπ (y) dy < ∞, π ∈ (0, 1) . (3.6)

(c4) Distributions functions Fπ, π ∈ (0, 1) are increasing on certain intervals Iπ ⊆ R in
the strict sense

Fπ (y1) < Fπ (y2) for y1 < y2 from Iπ (3.7)

and constant on the complements R−Iπ.

(c5) Distributions functions Fπ, π ∈ (0, 1) are stochastically ordered in the sense that
for every 0 < π1 < π2 < 1 and y ∈ R it holds Fπ1 (y) ≥ Fπ2 (y) where

Fπ1 (y) > Fπ2 (y) if y ∈ Iπ1 ∪ Iπ2 . (3.8)

We shall show that (c1)-(c5) imply the assumptions (E1+), (E2), (EM1), (EM2) and
(M1)-(M4) of Theorem 2 and Lemmas 8 and 9 in Liese and Vajda (1999).

The function ρ (y) = |y| is continuous, nondecreasing on (0,∞) and nonincreasing on
(−∞, 0) with ρ (0) = 0. Therefore (E1+) holds. Moreover, ρ (y) = ρ (y) ∧ ρ (−y) satisfies
the relation

ρ (∞) ≡ lim
y→∞

ρ (y) = ∞. (3.9)

The function π (t) = et/ (1 + et) is strictly increasing and continuous in the variable
t ∈ R. By (c4), m (π) = med (Fπ) is for every π ∈ (0, 1) unique and belongs to the
interior of Iπ. By (c5),

1/2 = Fπ1 (med (π1)) ≥ Fπ2 (med (π1))

so that med (π2) ≥ med (π1) . The assumption med (π2) = med (π1) for π1 < π2 contra-
dicts (c3) and (c5) because by (c3) med (π1) belongs not only to Iπ1 but also to Iπ2 for
π2 sufficiently close to π1. In this case (c5) implies

Fπ1 (med (π1)) > Fπ2 (med (π1))

so that med (π2) > med (π1). This proves that under (c3)-(c5) the function m (π) is
strictly increasing on (0, 1). The assumption of a jump of m (π) at some π = π0 ∈ (0, 1)
contradicts (c3) and (c4). Therefore (c3)-(c5) imply that m (π) is continuous and strictly
increasing on (0, 1). This means that the composed function

ϕ (t) = m (π (t)) (3.10)
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is continuous and strictly increasing in the variable t ∈ R, which is the above mentioned
assumption (E2). Moreover, we see that ϕ (t) is bounded on R if and only if m (π) is
bounded on (0, 1) and ϕ (t) = |ϕ (t)| ∧ |ϕ (−t)| satisfies the relation

ϕ (∞) ≡ lim
t→∞

ϕ (t) = ∞ (3.11)

if and only if m (π) is unbounded on (0, 1) in the sense

lim
π↑1

m (π) = ∞ and lim
π↓0

m (π) = −∞. (3.12)

The assumption (EM1) requires for every 0 < π1 < π2 < 1 and every t ∈ R

lim
N→∞

sup
π1<π<π2

∞∫

N

|y − t| dFπ (y) = 0

and

lim
N→−∞

sup
π1<π<π2

N∫

−∞

|y − t| dFπ (y) = 0.

We shall prove that the first relation follows from (c1) and (c5). Proof of the second
relation is similar. Since for large y ∈ R we have |y − t| ≤ y + |t| and, by (c5),

sup
π1<π<π2

∞∫

N

dFπ (y) = sup
π1<π<π2

(1− Fπ (N)) = 1− Fπ2(N),

the first relation will be proved if we prove that

lim
N→∞

sup
π1<π<π2

∞∫

N

y dFπ (y) = 0. (3.13)

By (3.6), for large N and every π ∈ (0, 1)

N (1− Fπ (N)) ≤
∞∫

N

y dFπ (y) →
N→∞

0.

Hence the integration by parts for the Lebesgue-Stiltjes integrals implies that

∞∫

N

d [y (1− Fπ (y))] =

∞∫

N

(1− Fπ (y)) dy −
∞∫

N

y dFπ (y)

so that ∞∫

N

y dFπ (y) = N (1− Fπ (N)) +

∞∫

N

(1− Fπ (y)) dy.
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By (c5), this implies that

sup
π1<π<π2

∞∫

N

y dFπ ≤ N (1− Fπ1 (N)) +

∞∫

N

(1− Fπ2 (y)) dy.

By (3.6), the right-hand side tends for N →∞ to zero which completes the desired proof
of (3.13).

In view of (3.9), the condition (EM2) reduces to

∫
|y −m (π)| dFπ (y) < ∞, π ∈ (0, 1) ,

which follows from (3.6) in (c3).

The continuity Fπ (y) → Fπ0 (y) for every y ∈ R and π → π0 required in (M1) follows
from (c3) and the strict monotonicity of π (t) required in (M2) was already clarified.
Assumptions (M3) and (M4) concerning the regressors coincide with those in (c1).

Thus we proved that under (c1)-(c5) all assumptions of Theorem 2 and Lemma 9
in Liese and Vajda (1999) hold. In Theorem 2 and Lemma 9 we meet also the following
condition.

(c6) The median function m (π) is either bounded on (0, 1) or unbounded in the sense
of (3.12).

The condition (3.12) is equivalent to (3.11), i.e. to ϕ (∞) = ∞. By Lemma 8 in Liese
and Vajda (1999), in this case the sufficient condition of Lemma 9 reduces to (3.5) assumed
in (c2). Hence, by the cited Theorem 2 and Lemmas 8, 9, under (c1)-(c6) the median

estimator β̂n consistently estimates true parameter β0 ∈ Rd provided the probability
measure Q of (c1) and the function ϕ of (3.10) define a new function

m (β) =

∫

R

∫

X

∣∣y − ϕ
(
xT β

)∣∣ dFπ(xT β) (y) dQ (x) (3.14)

of variable β ∈ Rd satisfying for every ε > 0 the condition

inf
‖β−β0‖≥ε

m (β) > m (β0) . (3.15)

This important fact will be used in the proof of the following theorem.

Theorem 3.1 If a continuous logistic regression model or a standardly modified discrete
regression model satisfies (c1)-(c6) then the median estimator β̂n of true parameter

12



β0 ∈ Rd is consistent if for every 0 < π1 < π2<1 there exists a > 0 such that the densities
fπ assumed in (c3) and the median function m (π) satisfy the condition

Λ (a) ≡ inf
|y|≤a

(
inf

π1≤π≤π2

fπ (m (π) + y)

)
> 0. (3.16)

Proof. By what was said above, it suffices to prove that if (c1)-(c6) holds then (3.16)
implies (3.15). Put for ϕ of (3.10)

∆ = ∆ (x, β) = ϕ
(
xT β0

)− ϕ
(
xT β

)
(3.17)

and
Z = Y − ϕ

(
xT β0

)
.

Then the density of Z is

gx (z) = fπ(xT β0)
(
z + ϕ

(
xT β0

))
, z ∈ R,

and

m (β)−m (β0) =

∫

X

[
w

(
xT β

)− w
(
xT β0

)]
dQ (x) (3.18)

for
w

(
xT β

)
= E

∣∣Y − ϕ
(
xT β

)∣∣

= E |Z + ∆ (x,β)| (cf. (3.17)) .

The difference
w

(
xT β

)− w
(
xT β0

)
= E (|Z + ∆ (x,β)| − |Z|) (3.19)

will be estimated by using the generalized Taylor formula

|Z + ∆| − |Z| = D |Z|∆ +R (Z, ∆) (3.20)

valid for all real ∆ where

D |z| = I (0 ≤ z < ∞)− I (−∞ < z < 0) (3.21)

is the right-hand derivative of the function |z| for z ∈ R and R (z, ∆) = (z + ∆)
·I (−∆ < z < 0) is a remainder in the formula (3.20). This follows from the generali-
zed Taylor expansion arbitrary convex functions established in (2.7) of Liese and Vajda
(2003). Since med (Z) = 0, it holds ED |Z| = 0. Therefore we get from (3.19), (3.20)

w
(
xT β

)− w
(
xT β0

)
= ER (Z, ∆)

=
∫

(z + ∆) I (−∆ < z < 0) gx (z) dz

=
∆∫
0

(∆− z) gx (−z) dz

=
∆∫
0

(∆− z) fπ(xT β0)
(
ϕ

(
xT β0

)− z
)
dz.

13



Since X ⊂ Rd is bounded, the values

π1 = inf
x∈X

π
(
xT β0

)
and π2 = sup

x∈X
π

(
xT β0

)

are bounded away from 0 and 1. Thus, taking into account that ϕ
(
xT β0

)
= m

(
π

(
xT β0

))
,

we see from (3.16) that we can find a > 0 such that

inf
|z|≤a

inf
x∈X

fπ(xT β0)
(
ϕ

(
xT β0

)− z
) ≥ Λ (a) > 0.

This implies that if 0 < b < a then for every |∆ (x, β)| > b it holds

w
(
xT β

)− w
(
xT β0

) ≥ b2

2
Λ (a) .

Hence, by (3.18), for every 0 < b < a we get

m (β)−m (β0) ≥
b2

2
Λ (a) Q (Xb,β) (3.22)

for the subset of regressors

Xb,β = { x ∈X : |∆ ( x, β)| ≥ b} .

By (c2), the smallest eigenvalue λ (Σ) of the matrix (3.4) is positive. Further, for every
τ > 0

λ (Σ) ‖β − β0‖2 ≤ (β − β0)
T Σ (β − β0)

=
∫
X

(
xT (β − β0)

)2
dQ (x)

≤ ‖X‖ . ‖β − β0‖2 Q
(X 0

τ ,β

)
+ τ 2

where ‖X‖ stands for max ‖x‖ on X and X 0
τ ,β =

{
x ∈X :

∣∣xT(β − β0)
∣∣ > τ

}
. From here

we see that for all ε > 0 and all sufficiently small τ > 0

ψ (τ , ε) ≡ inf
‖β−β0‖≥ε

Q
(X 0

τ ,β

)
> 0. (3.23)

Since we proved earlier that ϕ (t) of (3.10) is strictly increasing on R, the function

φ (τ) ≡ inf
|t|≤‖X‖.‖β0‖
|s−t|≥τ

|ϕ (s)− ϕ (t)|

is positive in the domain τ > 0 and, obviously,

Xφ(τ),β ⊇ X 0
τ ,β.

14



Further, ϕ (t) of (3.10) was proved to be continuous so that φ (τ) < a for all sufficiently
small τ > 0. Consequently (3.22) implies for any ε > 0

inf
‖β−β0‖≥ε

[m (β)−m (β0)] ≥ φ(τ)2

2
Λ (a) inf

‖β−β0‖≥ε
Q

(Xφ(τ),β

)

≥ φ(τ)2

2
Λ (a) inf

‖β−β0‖≥ε
Q

(X 0
τ ,β

)

= φ(τ)2

2
Λ (a) ψ (τ , ε) .

By (3.23), the last product is positive which proves the desired relation (3.15).

Now we formulate conditions which are in a combination with (c1)-(c6) sufficient for

the asymptotic normality of the median estimators β̂n.

(c7) The quantile function m (π) is differentiable on (0, 1) and the derivative m′(π) is
locally Lipschitz in the sense that for every π0 ∈ (0, 1) there exists a constant L (π0)
such that

|m′ (π)−m′ (π0)| ≤ L (π0) |π − π0| . (3.24)

(c8) The densities fπ assumed in (c3) satisfy for every 0 < π1 < π2 < 1 the condition

lim
y→0

sup
π1≤π≤π2

|fπ (m (π) + y)− fπ (m (π))| = 0. (3.25)

Under (c6), the function ϕ of (3.10) is continuously differentiable with the derivative
ϕ′ (t) = m′(π (t))π′ (t) where π′ (t) = π (t) (1− π (t)). Let us introduce similar notation as
in the proof of Theorem 3.1, namely let for i = 1, 2, ...

∆i (β) = ϕ
(
xT

i β0

)− ϕ
(
xT β

)
, β ∈Rd,

Zi = Yi − ϕ
(
xT

i β0

)
,

where
f̃i (z) = fπ(xT

i β0)
(
z + ϕ

(
xT

i β0

))
, z ∈ R,

is the probability density function of Zi. The functions ∆i (β) are continuously differen-
tiable on Rd with gradients

grad (∆i (β)) = −ϕ′
(
xT

i β
)
xi.

Therefore the linear term Ln (h) considered in (2.3) of Liese and Vajda (2004) is given
here by

Ln (h) = − 1√
n

n∑
i=1

D |Zi|ϕ′
(
xT

i β
)
xT

i h, h ∈ Rd,
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where D |z| denotes the right-hand derivative (3.21). Since ED |Zi| = 0, the variance of
Ln (h) is hT Σnh for the matrix given in accordance with (2.5) of Liese and Vajda (2004)
by

Σn =
1

n

n∑
i=1

E (D |Zi|)2 (
ϕ′

(
xT

i β
))2

xix
T
i .

But E (D |Zi|)2 = 1, so that we can write this matrix in the form

Σn =

∫

X

(
ϕ′

(
xT β

))2
xT x dQn (x)

where Qn is the empirical measure from (c1). Since ϕ′
(
xT β

)
is continuous and bounded

on X , it holds

lim
n→∞

Σn = Σ ≡
∫

X

(
ϕ′

(
xT β

))2
xT x dQ (x) (3.26)

where Q is the limit measure from (c1).
The next step is evaluation of the matrices

Qn =
1

n

n∑
i=1

gi (0)∇ϕ
(
xT

i β0

) (∇ϕ
(
xT

i β0

))T

where gi (t) denote derivatives of the functions Gi (t) = ED |Zi + t| of variable t ∈ R
introduced on p. 467 in Liese and Vajda (2003). By the definition of D |z| in (3.21), for
πi = π

(
xT

i β0

)
and ϕi = ϕ

(
xT

i β0

)

Gi (t) = EI (Zi + t > 0)− EI (Zi + t ≤ 0)

= EI (Yi > ϕi − t)− EI (Yi ≤ ϕi − t)

= 1− 2Fπi
(ϕi − t) .

Thus gi (t) = 2fπi
(ϕi − t) and

gi (0) = 2fπ(xT
i β0)

(
ϕ

(
xT

i β0

))
.

Therefore the matrices Qn may be given by

Qn = 2

∫

X

fπ(xT β0)
(
ϕ

(
xT β0

)) (
ϕ′

(
xT β0

))2
xT x dQn (x) .

Since ϕ′
(
xT

i β0

)
is continuous and bounded on X and, by (c8),

fπ(xT β0)
(
ϕ

(
xT β0

))
= fπ(xT β0)

(
m

(
π

(
xT β0

)))
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is continuous and bounded on X too, it holds

lim
n→∞

Qn = Q ≡ 2

∫

X

fπ(xT β0)
(
ϕ

(
xT β0

)) (
ϕ′

(
xT β0

))2
xT x dQ (x) . (3.27)

Finally, Dρ (Zi) = D |Zi| is in the present situation bounded and grad (∆i (β0)) =
−ϕ′

(
xT

i β0

)
xi is bounded uniformly for all possible xi ∈ X . Since Zi and ∆i(β) were

denoted in Liese and Vajda (2004) by Xi and fi(β), this means that the Liapunov condi-
tion (2.6) of Liese and Vajda (2004) holds. Similarly, one can verify that the conditions
(C3), (C4) of Liese and Vajda (2003) as well as (2.39), (2.40) ibid. hold. Thus, by
Lemma 3 in Liese and Vajda (2003), (C5) and (C6) ibid. hold too.

Thus we can conclude that if (c1)-(c8) hold then all assumptions of Theorem 1 in
Liese and Vajda (2004) are satisfied and the following assertion is proved.

Theorem 3.2 Let a logistic regression model considered in Theorem 3.1 satisfy (c1)-(c8)
and let the condition (3.16) of Theorem 3.1 hold. If the limit matrix Q in (3.27) is positive

definite then the median estimator β̂n of true parameter β0 ∈ Rd is asymptotically normal
in the sense that √

n
(
β̂n − β0

) L→
n→∞

N
(
0, Q−1ΣQ−1

)
(3.28)

for Σ given by (3.26).

Proof. See above.

4 Applications to the Bernoulli model

In this section we apply the theory of Section 3 to the general Bernoulli model introduced
in Section 2. As argued in Section 2, for this application it is convenient to consider the
standard modification of this model with the distribution functions Fπ (y) , π ∈ (0, 1) of
the form given in Fig. 4.1 and the corresponding densities

fπ (y) = (1− π) I (0 < y ≤ 1) + πI (1 < y < 2) , y ∈ R. (4.1)

It follows from here that (c3)-(c5) hold. The median function m (π) is given on (0, 1) by
(2.36), from where it is seen that it is bounded on (0, 1) and continuously differentiable
with bounded derivative. Therefore the model under consideration satisfies also (c6) and
(c7).

The conditions (c8) and (3.16) will be proved for arbitrary 0 < π1 < π2 < 1 if we
prove them separately for π1 = 1/2 < π2 < 1 and 0 < π1 < π2 = 1/2. We shall prove
them for π1 = 1/2 < π2 < 1 only since for the alternative the proof is similar. Let π > 1/2
be arbitrary. It is seen from (2.36) that

1 +
1

2
> m (π) = 1 +

2π − 1

2π
> 1

17
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Figure 4.1: Fπ (y) full line, F1−π (y) dashed line.

so that if y 6= 0 with |y| ≤ 1/2 is fixed then

fπ (m (π) + y) = fπ (m (π)) = π

unless m (π) + y ≤ 1 in which case fπ (m (π) + y) = 1− π. Thus

inf
1/2≤π≤π2

fπ (m (π) + y) ≥ 1− π

which implies (3.16). Further, the absolute difference |fπ (m (π) + y)− fπ (m (π))| is either
zero or π − (1− π) = 2π − 1. This difference will be maximized if we take maximal π
satisfying the inequality m (π) + y ≤ 1 for the fixed y. Since m (π) is increasing in π, this
means that

sup
1/2≤π<π2

|fπ (m (π) + y)− fπ (m (π))| = fπ∗ (m (π∗) + y)− fπ∗ (m (π∗))

where π∗ solves the equation m (π) + y = 1. Solutions π∗ exist only for y < 0 (i.e.
−1/2 < y < 0) and then π∗ = 1/ [2 (1− |y|)] . Thus we proved that

sup
1/2≤π<π2

|fπ (m (π) + y)− fπ (m (π))| ≤ 2π∗ − 1 =
|y|

1− |y|

which implies (c8).

It follows from (3.10) that

ϕ (t) =





3

2
− e−t

2
if t ≥ 0

1

2
+

et

2
if t < 0 .
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Therefore

ϕ′ (t) =
e−|t|

2
if t ∈ R.

Further
fπ(t) (ϕ (t)) = π (t) ∨ (1− π (t))

=
1

1 + e−t
∨ 1

1 + et

=
1

1 + e−|t|
=

e|t|

1 + e|t|
.

Consequently,

fπ(t) (ϕ (t)) (ϕ′ (t))2
=

e−|t|

4 (1 + e|t|)

Therefore we get from (3.26) that

Σ =
1

4

∫

X

e−2|xT β0|xxT dQ(x) (4.2)

and from (3.27) that

Q =
1

2

∫

X

e−|xT β0|
1 + e|xT β0| xxT dQ(x). (4.3)

Since we proved that the model under consideration satisfies (c3)-(c8) and (3.16),
Theorem 8.2 implies the following assertion.

Corollary 4.1. If the regressors in the above considered logistic model with binary re-
sponses satisfy (c1) and (c2) and the matrix Q given by (4.3) is positive definite then

the median estimator β̂n of the true parameter β0 ∈ Rd is asymptotically normal in the
sense √

n
(
β̂n − β0

) D→
n→∞

N
(
0,Q−1ΣQ−1

)
(4.4)

for Σ given in (4.2).

Example 4.1. The univariate Bernoulli logistic regression model with identical regressors
x1 = x2 = .... = 1 is characterized by observations Yi ∼ Fπ(β0), 1 ≤ i ≤ n where

π (β) =
eβ

1 + eβ
, β ∈ R
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and Fπ is the Bernoulli response distribution function considered in Figure 4.1. This model
satisfies (c1) and (c2) with the Dirac measure Q = δ1 concentrated at 1 ∈ X = {1} ⊂
R.Therefore we get from (4.2) and (4.3) that

Σ =
1

4
e−2|β0|, Q =

e−|β0|

2 (1 + e|β0|)
.

But

π (t) ∧ (1− π (t)) =
1

1 + e−t
∧ 1

1 + et

=
1

1 + e|t|

so that

Q−1ΣQ−1 =
(
1 + e|β0|

)2
=

1

π (β0)
2 ∧ (1− π (β0))

2 .

This result coincides with (6.22) and (6.23) obtained in Section 6 below by a direct
calculation.

5 Contaminated Bernoulli models

The median estimators β̂n of the true logistic regression parameters β0 ∈ Rd introduced in
Section 2 and studied in Section 3 were defined by means of the least absolute deviations
principle. The original justification of this principle in the papers cited after formula (2.2)
was the robustness of the resulting estimators, namely their resistance to gross errors
in the observations Y1, ...., Yn. This means that one can expect more robustness from the
median estimator proposed by us for the general logistic regression than from the classical
MLE’s or from the estimators obtained by the least square method (L2−estimators) and
applied to the logistic regression. Similar robust alternatives to the classical MLE’s seem
so far been considered only for the logistic regression with Bernoulli responses. We shall
describe the two most recent of those known to us.

Morgenthaler (1992) introduced an L1−estimator β(1)
n for the logistic regression with

linear responses Yi given by (2.1) for the Bernoulli distribution function Fπ (y) given in
(2.15). He started with the weighted L1-estimator

β(0)
n = arg min

β

n∑
i=1

|∆i (β)|
σi (β)

,

where
σ2

i (β) = π
(
xT

i β
) (

1− π
(
xT

i β
))

, ∆i (β) = Yi − π
(
xT

i β
)
,

more precisely with the solutions β(0)
n of the system of equations U

(0)
n (β) = 0, for

U (0)
n (β) = DT {diag (σ1 (β) , ..., σn (β))}−1/2 (sgn ∆1 (β) , ..., sgn ∆n (β))T
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where D =
(
Dij = ∂π

(
xT

i β
)
/∂βj

)T

i,j=1
and sgn denotes the sign. Since the resulting

estimator β(0)
n was inconsistent, he proposed a slight modification β(1)

n which solves the

equation U
(1)
n (β) = 0 for the centered version U

(1)
n (β) = U

(0)
n (β)−EβU

(0)
n (β) . We shall

find an explicit formula for U
(1)
n . It is easy to see that

EβU (0)
n (β) = DT {diag (σ1 (β) , ..., σn (β))}−1/2 (2µ1 (β)− 1, ..., 2µn (β)− 1)T

for the expectation functions

µi (β) = EβYi = π
(
xT

i β
)

(5.5)

and, moreover,
sgn ∆i (β)− (2µi (β)− 1) = 2∆i (β) .

Therefore

U (1)
n (β) = DT {diag (σ1 (β) , ..., σn (β))}−1/2 (∆1 (β) , ..., ∆n (β))T .

Since
D =

(
diag

(
σ2

1 (β) , ..., σ2
1 (β)

))
(x1, ..., xn)T ,

we finally obtain the d-variate functions U
(1)
n (β) in the form

U
(1)
n (β) = (x1, ..., xn) {diag (σ1 (β) , ..., σn (β))} (∆1 (β) , ..., ∆n (β))

=
n∑

i=1

σi (β) ∆i (β) xi

=
n∑

i=1

√
π (xT

i β) (1− π (xT
i β))

(
Yi − π

(
xT

i β
))

xi.

(5.6)

An alternative robust estimator β(2)
n for the logistic regression was proposed by Bianco

and Yohai (1996) who also assumed the Bernoulli responses Yi given in (2.1) for the Fπ (y)
of (2.15). They started with the MLE

βn = arg min
β

n∑
i=1

Di (β) (5.7)

where
Di (β) = −Yi ln µi (β)− (1− Yi) ln (1− µi (β)) (5.8)

and µi (β) = π
(
xT

i β
)

are the expectation functions (5.5). If the data (x1, Y1) , ..., (xn, Yn)
are from the assumed model, i.e. if Yi∼Be

(
π
(
xT

i β0

))
then the expected value of the sum

minimized in (5.7) is

E

(
n∑

i=1

Di (β)

)
=

n∑
i=1

[−µi (β0) ln µi (β)− (1− µi (β0)) ln (1− µi (β))]
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which is minimized by β = β0 since for every 1 ≤ i ≤ n

µi (β0) ln
µi (β0)

µi (β)
+ (1− µi (β0)) ln

1− µi (β0)

1− µi (β)
≥ 0.

It follows from here that β = β0 is the only minimum of E (
∑n

i=1 Di (β)) unless all
x1, ..., xn are from a hyperplane in Rd, i.e., unless xT

i (β − β0) = 0 for some β 6= β0

and all 1 ≤ i ≤ n. Under mild regularity this property of E (
∑n

i=1 Di (β)) already gua-
rantees nice asymptotic properties of βn like consistency and asymptotic normality with
the variances at the Cramér-Rao lower bound. However, this estimator is too sensitive to
the gross errors (outliers) among the data (x1, Y1) , ..., (xn, Yn) which are the pairs (xi, Yi)
where Yi are not generated by the Bernoulli model Be

(
π

(
xT

i β0

))
. Typical outliers are

Yi = 0 and xi leading to π
(
xT

i β0

) ≈ 1 or Yi = 1 and π
(
xT

i β0

) ≈ 0. A simple source
of outliers taking place with a probability 0 < ε < 1/2 is the transmission of the true
observations Yi ∼ Be

(
π

(
xT

i β0

))
through a binary symmetric channel presented in Fig.

5.1.

-

ZiYi

HHHHHHHHHHj©©©©©©©©©©*

-

0 0

1 1
1− ε

1− ε

ε

ε

Figure 5.1: Binary Symmetric channel BSC(ε) with independent inputs Yi,
additive (mod 2) independent noise Wi ∼ Be (ε) and independent outputs

Zi = Yi + Wi (mod 2).

Then the actual data (x1, Z1) , ..., (xn, Zn) contain responses Zi generated by the stochas-
tic mixture

(1− ε) Be
(
π

(
xT

i β0

))
+ εBe

(
1− π

(
xT

i β0

))

of the Bernoulli models with parameters π
(
xT

i β0

)
and 1−π

(
xT

i β0

)
. The outliers (xi, Yi)

with Yi ∼ Be
(
1− π

(
xT

i β0

))
and µi (β0) = π

(
xT

i β0

)
very close to 0 or 1 lead with a

high probability to very large values of Di (β0), thus pushing the MLE estimate (5.7)
away from the true value β0. The resulting effect is a sharp loss of consistency.

To restrict the influence of the outliers (xi, 0) with probabilities π
(
xT

i β0

)
= 1 − δi

close to 1 and the outliers (xi, 1) with probabilities π
(
xT

i β0

)
= δi close to 0, both of them

leading to large Di (β0) = − ln δi, Bianco and Yohai (1996) replaced the MLE βn by the
M -estimator

β(0)
n = arg min

β

n∑
i=1

ρ (Di (β)) (5.9)

22



where

ρ (y) =

(
y − y2

2c

)
I (0 ≤ y ≤ c) +

c

2
I (y > c) (5.10)

is a hard-limiter defined on the real line and specified by a limiting constant c > 0.
However, the hard-limiting violates the consistency since E [

∑n
i=1 ρ (Di (β))] is no more

minimized at β = β0. Similarly as in the case of β(0)
n of Morgenthaler (1992), Bianco and

Yohai introduced a bias-correcting term into (5.9). They proved that if c > ln 2 = 0.7 and

G (π) =

π∫

0

ρ′ (− ln t) dt for π ∈ (0, 1) (5.11)

then β = β0 minimizes the expectation

n∑
i=1

[Eρ (Di (β)) + G (µi (β)) + G (1− µi (β))]

and that this minimum is unique unless all x1, ..., xn are from a hyperplane in Rd. The-
refore the consistent robust estimator of Bianco and Yohai for the logistic regression with
binary responses is

β(2)
n = arg min

β

n∑
i=1

[ρ (Di (β)) + G (µi (β)) + G (1− µi (β))] (5.12)

for ρ defined by (5.10) with c > ln 2, Di (β) defined by (5.8), G (y) defined by (5.11) and for
regressors x1, ..., xn satisfying some regularity assumptions. (E.g., they are assumed to be
independent realizations of a d−variate random vector X such that Pr

(
XT (β − β0) 6= 0

)
= 1 for every β 6= β0).

The robust alternatives β(1)
n and β(2)

n to our median estimator β̂n will be compared

with β̂n on simulated contaminated data from the logistic regression models to which
these alternatives were designed, i.e. from the Bernoulli models. These simulations are
presented in Section 9 and Section 11. The robustness of β̂n will also be demonstrated
on simulated contaminated data from some logistic regression models with non-binary
responses, namely from the models with geometric responses. These results will be given
in Section 10.

6 Identical regressors in univariate Bernoulli models

In this section we study the simple special case, namely the Bernoulli models, of dimension
d = 1 with all univariate regressors identical, x1 = x2 = ... = x ∈ R. For simplicity we put
x = 1. Thus we estimate a parameter β0 ∈ R using the independent logistic regression
observations

Yi ∼ Fπ(β0)(y), 1 ≤ i ≤ n, (6.1)
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where

π (β) =
eβ

1 + eβ
, β ∈ R (6.2)

and Fπ is the Bernoulli response distribution function of (2.15).
The Fisher information I (π) in the Bernoulli model Be (π) is

I (π) =
1

π (1− π)
(6.3)

and the MLE of a true parameter, π0 ∈ (0, 1) is the relative frequency

Y n =
1

n

n∑
i=1

Yi (6.4)

satisfying the relation

√
n

(
Y n − π0

) D→
n→∞

N (0, π0 (1− π0)) . (6.5)

Fisher information in the model Bernoulli logistic regression model (6.1) is

J (β0) =
[π′ (β0)]

2

π (β0)
+

[
(1− π (β0))

′]2

1− π (β0)

=
[π′ (β0)]

2

π (β0) (1− π (β0))
=

[π (β0) (1− π (β0))]
2

π (β0) (1− π (β0))

= π (β0) (1− π (β0)) =
eβ0

(1 + eβ0)2 .

(6.6)

The MLE βn in this model is

βn = φ
(
Y n

)
where φ (y) = π−1 (y) = ln

y

1− y
.

For π0 = π (β0) we have

φ
(
Y n

)− φ (π0) = φ′ (π0)
(
Y n − π0

)
+ o

(
Y n − π0

)
. (6.7)

Since

φ
(
Y n

)
= βn, φ (π0) = π−1 (π (β0)) = β0, φ′ (y) =

1

y(1− y)
,

we get from (6.7)

√
n (βn − β0) =

1

π0 (1− π0)

√
n

(
Y n − π0

)
+ o

(√
n

(
Y n − π0

))
.
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Hence by (6.5),

√
n (βn − β0) =

1

π0 (1− π0)

√
n

(
Y n − π0

)
+ op (1)

D→
n→∞

N

(
0,

π0 (1− π0)

[π0 (1− π0)]
2

)

= N

(
0,

1

π0 (1− π0)

)
= N

(
0,

(
1 + eβ0

)2

eβ0

)
.

(6.8)

In this derivation we used only the asymptotic normality (6.5). Hence the estimator

βn = ln
Y n

1− Y n

(6.9)

consistently estimates β0 in every model π̃ (β) such that π̃ (β0) = π (β0) and, using the
Taylor expansion (6.7), we find that

√
n (βn − β0)

D→
n→∞

N

(
0,

1

π (β0) (1− π (β0))

)
(cf. (6.8).

But βn need not be the MLE in the model π̃ (β). Such estimator is

β̃n = π̃−1
(
Y n

)
(6.10)

for which
√

n
(
β̃n − β0

) D→
n→∞

N

(
0,

π̃ (β0) (1− π̃ (β0))[
π̃′ (β0)

]2

)
(6.11)

because the Fisher information in this model is

J̃ (β0) =

[
π̃′ (β0)

]2

π̃ (β0) (1− π̃ (β0))
(cf. (6.6). (6.12)

For example, the model

π̃ (β) =
eβ

3
∧ 1, β ∈ R (6.13)

for the particular value β0 = ln 2 satisfies the relation

π̃ (β0) =
eln 2

3
=

2

3
=

eln 2

1 + eln 2
= π (β0)

where the model π (β) is given by (6.2). The Fisher information in this model is in the
domain β < ln 3 given by

J̃ (β) =

[
π̃′ (β)

]2

π̃ (β) (1− π̃ (β))
=

[π̃ (β)]2

π̃ (β) (1− π̃ (β))
=

π̃ (β)

1− π̃ (β)
.
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By (6.10) and (6.11), the MLE

β̃n = π̃−1
(
Y n

)
= ln(3Y n)

satisfies the relation √
n

(
β̃n − β0

) D→
n→∞

N

(
0,

1− π̃ (β0)

π̃ (β0)

)
(6.14)

and
1

J̃ (β0)
=

1− π̃ (β0)

π̃ (β0)
<

1

π̃ (β0) (1− π̃ (β0))
=

1

J (β0)
. (6.15)

We see from here if π (β) is not the correct model then the MLE βn may lead to the
asymptotic variance σ2 = 1/J (β0) much larger than that given by the achievable Cramér-

Rao bound σ̃2 = 1/J̃ (β0) .

Let us now look what is obtained from the median estimator β̂n defined by (2.22)
using the continuously modified data

Yi ∼ fπ0 (y) = (1− π0) I (0 < y ≤ 1) + π0I (1 < y ≤ 2) (6.16)

(cf. (2.33)) where π0 = π (β0) . This estimator is defined by

β̂n = arg min
β

n∑
i=1

|Yi −m (π (β))|

for m (π) given by (2.36) and π (β) given by (6.2). Let Y(1) ≤ ..... ≤ Y(n) be the ordered
sample Y1, ....., Yn and denote by Y(n/2) the sample median. As well known,

Y(n/2) = arg min
m

n∑
i=1

|Yi −m| . (6.17)

Therefore

β̂n = φ
(
m−1

(
Y(n/2)

))
= ln

m−1
(
Y(n/2)

)

1−m−1
(
Y(n/2)

) ,

where φ (y) = ln (y/ (1− y)) is inverse to π (β) . In other words,

β̂n = φ (π̂n) (6.18)

for

π̂n = arg min
π

n∑
i=1

|Yi −m (π)| = m−1
(
Y(n/2)

)
. (6.19)

By p. 490 in Rényi (1970), the random observations (6.16) satisfy the limit law

√
n

Y(n/2) −m (π0)

1/ [2fπ0 (m (π0))]

D→
n→∞

N(0, 1). (6.20)
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Suppose that π0 ≥ 1/2 in which case fπ0 (m (π0)) = π0. Then

√
n

(
Y(n/2) −m (π0)

) D→
n→∞

N

(
0,

1

4π2
0

)
. (6.21)

For φ (y) = ln (y/ (1− y)) and ψ (y) = φ (m−1 (y)) we obtain

ψ′ (y) = φ′ (m−1 (y)) (m−1 (y))
′

=
1

m−1 (y) (1−m−1 (y))
(m−1 (y))

′

=
1

m−1 (y) (1−m−1 (y))





1

2 (2− y)2 ≡ 2 (m−1 (y))
2

if 1 ≤ y ≤ 3/2

1

2y2
≡ 2 (1−m−1 (y))

2
if 1/2 ≤ y ≤ 1

=





2 (m−1 (y))

1−m−1 (y)
if 1 ≤ y ≤ 3/2

2 (1−m−1 (y))

m−1 (y)
if 1/2 ≤ y ≤ 1 .

Therefore

ψ′ (m (π0)) =





2π0

1− π0

if 1/2 ≤ π0 ≤ 1

2 (1− π0)

π0

if 0 < π0 ≤ 1/2 .

Using similar Taylor expansion as (6.7), we obtain for π0 ≥ 1/2 from (6.21)

√
n

(
ψ

(
Y(n/2)

)− ψ (m (π0))
) D→

n→∞
N

(
0,

(
ψ′ (m (π0))

)2
1

4π2
0

)
.

Hence for π0 ∈ [1/2, 1)

√
n

(
φ

(
m−1

(
Y(n/2)

))− φ
(
m−1 (m (π0))

)) D→
n→∞

N

(
0,

(
2π0

1− π0

)2
1

4π2
0

)
.

By (6.19), Y(n/2) = m
(
π

(
β̂n

))
where π

(
β̂n

)
= φ−1

(
β̂n

)
. Further, φ (π0) = φ (π (β0))

= π−1 (π (β0)) = β0. Therefore we obtain from the last limit relation

√
n

(
β̂n − β0

) D→
n→∞

N

(
0,

1

(1− π (β0))
2

)
. (6.22)

27



Similarly for π0 ∈ (0, 1/2] we obtain

√
n

(
β̂n − β0

) D→
n→∞

N

(
0,

1

(π (β0))
2

)
, (6.23)

i. e. the asymptotic variance of β̂n is the maximum of 1/ (π (β0))
2 and 1/ (1− π (β0))

2 .
By (6.15), this maximum satisfies the inequality

1

(π (β0))
2 ∨

1

(1− π (β0))
2 ≥

1

J (β0)
=

1

π (β0) (1− π (β0))
,

i.e. the asymptotic variance of the median estimator β̂n in the present simple model
π (β) = eβ/

(
1 + eβ

)
exceeds that of the MLE βn given by (6.9).

However, it follows from the derivation of (6.22) that the asymptotic variance1/(π(β0))
2

∨[1/ (1− π (β0))
2] exceeds the asymptotic variance 1/J (β0) = 1/ [π (β0) (1− π (β0))] of

βn in every model π̃ (β) with true β0 satisfying the equality π̃ (β0) = π (β0) . For example,
for the model π(β0) given by (6.13) and β0 = ln 2 we obtain the asymptotic standard
deviation

1

1− π (β0)
=

1

1− 2/3
= 3

for β̂n and
1√

π (β0) (1− π (β0))
=

3√
2

= 2.12

for βn. At the same time, the smallest standard deviation given by the Cramér-Rao bound

and achieved by the true MLE β̃n = ln(3Y n) is

√
1− π (β0)

π (β0)
=

1√
2

= 0.71.

We see that for wrongly specified models the quality of the median estimator β̂n may
be comparable to that of the false MLE βn but it can never be better. To demonstrate

advantages of β̂n over the false MLE βn we need less trivial univariate Bernoulli models
where the regressors x1, ..., xn are still simple in the sense that they are univariate but
they are not more identical (see Section 8 below).

7 Identical regressors in univariate geometric models

Here we study similar special case x1 = x2 = ... = 1 ∈ R as in the previous section,
with the model given by (6.1) and (6.2), but with the Bernouli response function Fπ (y)
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of (2.15) replaced by the geometric response function of (2.17). The Fisher information
in the geometric model is

I (π) =
1

π (1− π)2 . (7.1)

Moreover
EYi =

π0

1− π0

and E (Yi − EYi)
2 =

π0

(1− π0)
2

for

π0 = π (β0) =
eβ0

1 + eβ0
. (7.2)

Further, the sample mean Y n given in (6.4) is the MLE of the function π0/(1−π0) of the
true parameter β0 ∈ R with the property

√
n

(
Y n − π0

1− π0

)
D→

n→∞
N

(
0,

π0

(1− π0)
2

)
. (7.3)

From (7.3) and from the Taylor formula

φ
(
Y n

)− φ

(
π0

1− π0

)
= φ′

(
π0

1− π0

)(
Y n − π0

1− π0

)
+ op

(
Y n − π0

1− π0

)

for φ (y) = y/ (1 + y) we obtain

√
n

(
φ

(
Y n

)− φ

(
π0

1− π0

))
D→

n→∞
N

(
0, φ′

(
π0

1− π0

)2
π0

(1− π0)
2

)
.

Since φ (π/ (1− π)) = π, this means that the estimator πn = Y n/
(
1 + Y n

)
of π0 satisfies

the relation √
n (πn − π0)

D→
n→∞

N

(
0, (1− π0)

4 π0

(1− π0)
2

)

= N
(
0, π0 (1− π0)

2)

= N (0, 1/I (π0)) (cf. (7.1)) .

(7.4)

Further, since
π0

1− π0

= eβ0 ,

we get from (7.3) and from the Taylor formula

ln
(
Y n

)− ln eβ0 =
1

eβ0

(
Y n − eβ0

)
+ op

(
Y n − eβ0

)
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that the MLE βn = ln
(
Y n

)
of β0 satisfies the relation

√
n (βn − β0)

D→
n→∞

N

(
0,

eβ0
(
1 + eβ0

)

e2β0

)

= N (0, 1/π (β0))

= N (0, 1/J (β0))

(7.5)

where

J (β) =
∞∑

k=0

(
dpπ(β) (k) /dβ

)2

pπ(β) (k)
= π (β)

with pπ (k) denoting the jumps (2.18) of the geometric response function is the Fisher
information in the logistic regression model (6.1) and (6.2) with geometric responses.

Let us now consider the median estimator

π̂n = arg min
π

n∑
i=1

|Yi −m (π)| (7.6)

of π0 for the median function m (π) given in (2.39). By (6.17), π̂n is the solution of the
equation

m (π̂n) = Y(n/2), i.e. π̂n = m−1
(
Y(n/2)

)
, (7.7)

and the median estimator β̂n of β0 defined by (2.22) is given, by

β̂n = ln
π̂n

1− π̂n

. (7.8)

Let us analyze the case β0 < 0, i.e. π0 < 1/2. In the domain π < 1/2 we get from
(2.39)

m (π) =
1

2 (1− π)
∈ (1/2, 1) . (7.9)

Thus if Y(n/2) ≥ 1/2 then (7.7) and (7.8) imply

π̂n =
2Y(n/2) − 1

2Y(n/2)

and β̂n = ln
(
2Y(n/2) − 1

)
. (7.10)

Since

ψ′ (y) = 2 (1− ψ (y))2 for ψ (y) =
2y − 1

2y

and ψ (m (π0)) = π0, it holds the Taylor formula

ψ
(
Y(n/2)

)− π0 = 2 (1− π0)
2 (

Y(n/2) −m (π0)
)

+ op

(
Y(n/2) −m (π0)

)
. (7.11)

30



By p. 490 in Rényi, the relation (6.20) remains valid for the present median formula (7.9)
and the present density

fπ (y) = (1− π)
∞∑

k=0

πkI (k < y ≤ k + 1) . (7.12)

Since for π0 < 1/2 we have m (π0) < 1, it holds fπ0 (m (π0)) = 1 − π0 and we get from
(6.20)

√
n

(
Y(n/2) −m (π0)

) D→
n→∞

N

(
0,

1

4 (1− π0)
2

)
. (7.13)

This together with (7.11) implies

√
n (π̂n − π0)

D→
n→∞

N
(
0, (1− π0)

2) . (7.14)

Similarly the definition of β̂n in (7.10) together with (7.13) implies

√
n

(
β̂n − β0

) D→
n→∞

N

(
0,

(
2

2m (π0)− 1

)2

.
1

4 (1− π0)
2

)

= N

(
0,

4 (1− π0)
2

π2
0

.
1

4 (1− π0)
2

)

= N (0, 1/π2 (β0)) .

(7.15)

If we take into account that π0 = π (β0) < 1/2, we see that the asymptotic variance
(1− π0)

2 of the estimator π̂n in (7.14) is larger than the asymptotic variance π0 (1− π0)
2

of πn in (7.4). Similarly the asymptotic variance 1/π2 (β0) of the median estimator β̂n in
(7.15) is larger than the asymptotic variance 1/π (β0) of the MLE βn in (7.5).

In spite of that the MLE βn is asymptotically preferable to the median estimator β̂n

under the true geometric model (6.1), (6.2), the opposite asymptotic preference can be
obtained if an alternative model producing outliers takes places with an arbitrary small
probability ε > 0. To see this, suppose that the geometric distribution function Fπ(β0) (y)
is replaced by the mixture

(1− ε) Fπ(β0) (y) + εG (y) (7.16)

where G (y) is a step function on R with the jumps

G (k)−G (k − 0) =
1

k (k + 1)
(7.17)

at k = 1, 2, ..., i.e. where

G (k) = 1− 1

k + 1
for k = 0, 1, ... . (7.18)
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If the responses Y1, ..., Yn are distributed by (7.16) then the sample mean Y n tends to the
expectation

(1− ε)
π (β0)

1− π (β0)
+ ε

∞∑

k=1

k

k (k + 1)
(7.19)

which is infinite as soon as ε > 0. Here for all ε > 0 the MLE β̂n = ln
(
Y n

)
fails to meet

the asymptotic normality (7.5) because it surely diverges to infinity. On the other hand,
the median function mε (π) of the equivalent continuous modification of the model (7.16)
is finite and tends to m (π) for ε ↓ 0. Hence the asymptotic bias of the median estimator

β̂n will vanish for ε ↓ 0. If π < 1/2 then mε (π) is given by the formula

mε (π) =
1

2 (1− ε) (1− π) + ε
(cf. (7.9)) (7.20)

so that instead of (7.10) we obtain from (7.7) and (7.8)

π̂n =
2Y(n/2) − 1− εY(n/2)

2Y(n/2) (1− ε)
and β̂n = ln

(
2Y(n/2) − 2

1− εY(n/2)

+ 1

)
. (7.21)

8 Binary regressors in univariate Bernoulli models

In this section we study the same Bernoulli model as in Section 7, of the dimension d = 1,
but with the univariate regressors x1, ..., xn taking on two different values. For simplicity
we suppose that n is even and

x1 = x2 = ... = xn/2 = 1, xn/2+1 = xn/2+2 = .... = xn = −1.

We consider the binary responses

Yi ∼ Fπ(β0) (y) , 1 ≤ i ≤ n/2 (8.1)

and
Yi ∼ F1−π(β0) (y) , n/2 < i ≤ n (8.2)

for

π (β) =
eβ

1 + eβ
and 1− π (β) =

e−β

1 + e−β
=

1

1 + eβ
(8.3)

where Fπ (y) is the distribution of (2.35) corresponding to the standardly modified Ber-
noulli regression with the median function m (π) given by (2.36). We shall evaluate the

three robust estimators β̂n, β(1)
n and β(2)

n of β0 introduced in Section 2.

By (2.22), our median estimator β̂n is defined by

β̂n = arg min
β




n/2∑
i=1

|Yi −m (π (β))|+
n∑

i=n/2+1

|Yi −m (1− π (β))|

 (8.4)
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for the standarly modified Bernoulli logistic regression data Yi. Obviously,

β̂n = ln
π̂n

1− π̂n

(8.5)

where π̂n is the median estimator of π0 = π (β0) defined by

π̂n = arg min
π




n/2∑
i=1

|Yi −m (π)|+
n∑

i=n/2+1

|Yi −m (1− π)|

 . (8.6)

Since m (π) of (2.36) is strictly monotone in π ∈ (0, 1) and

φ (m) =
k∑

i=1

|Yi −m|

is decreasing in the domain m ∈ (−∞, Y(k/2)

)
, the function

ψ (π) =

n/2∑
i=1

|Yi −m (π)|+
n∑

i=n/2+1

|Yi −m (1− π)|

is decreasing in the domain
π ∈ (

0, π̂+
n ∧ π̂−n

]

and increasing in the domain
π ∈ (

π̂+
n ∧ π̂−n ,∞]

where
π̂+

n = m−1
(
Y(n/4)

)
, π̂−n = 1−m−1

(
Y(3n/4)

)
. (8.7)

Thus the minimization in (8.6) can be restricted to the interval

π ∈ [
π̂+

n ∧ π̂−n , π̂+
n ∨ π̂−n

]

for π̂+
n and π̂−n given by (8.7). But we can prove more.

Theorem 8.1. The median estimates β̂n and π̂n are a.s. uniquely defined by (8.4), (8.6)
and it holds

π̂n = med
(
Y1, ..., Yn/2, 2− Yn/2+1, ..., 2− Yn

)
(8.8)

while β̂n is obtained by applying (8.5) to (8.8).

Proof. It follows from (2.36) that m(π) = 2−m(1− π). Therefore

n∑

i=n/2+1

|Yi −m (1− π)| =
n∑

i=n/2+1

|2− Yi −m (π)|
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and

π̂n = arg min
π

n∑
i=1

|Zi −m (π)| = m−1
(
Z(n/2)

)

where

Zi =

{
Yi when 1 ≤ i ≤ n/2

2− Yi when n/2 ≤ i ≤ n

and the median Z(n/2) is a.s. unique arg minm

∑n
i=1 |Zi −m| . The statement of Theorem

5.1 is clear from here.

The robust estimator β(1)
n of Morgenthaler (1992) solves the equation U

(1)
n (β) = 0

where, by (5.6),

U
(1)
n (β) =

n/2∑
i=1

√
π (β) (1− π (β)) (Yi − π (β))−

n∑
i=n/2+1

√
π(β) (1− π (β)) (Yi − 1 + π (β))

=
√

π (β) (1− π (β))

[(
n/2∑
i=1

Yi −
n∑

i=n/2+1

Yi + n
2
− nπ (β)

)]

for given binary responses Yi. Hence

β(1)
n = ln

π
(1)
n

1− π
(1)
n

(8.9)

for

π(1)
n =

Y
+

n + 1− Y
−
n

2
(8.10)

where

Y
+

n =
1

n/2

n/2∑
i=1

Yi and Y
−
n =

1

n/2

n∑

i=n/2+1

Yi (8.11)

are the average regressors corresponding to the explanatory variables xi = +1 and xi =
−1, respectively.

The robust estimator β(2)
n of Bianco and Yohai (1996) is defined by (5.12) and depends

on a constant c > 0 figuring in (5.10) . The consistency of β(2)
n was proved for c > ln 2 so

that we can consider c = 1. This means that

β(2)
n = arg min

β

(
M+ (β) + M− (β)

)
(8.12)

for

M+ (β) =

n/2∑
i=1

[ρ (−Yi ln π (β)− (1− Yi) ln (1− π (β))) + H (π (β))]
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and

M− (β) =
n∑

i=n/2+1

[ρ (−Yi ln (1− π (β))− (1− Yi) ln π (β)) + H (π (β))] .

In these formulas

ρ (y) =

(
y − y2

2

)
I (0 ≤ y ≤ 1) +

1

2
I (y > 1) (8.13)

(cf. (5.10)) and
H (π) = G (π) + G (1− π) (8.14)

where

G (π) = I (π > 1/e)

(
π ln π +

1

e

)
, π ∈ (0, 1) (cf.(5.11)). (8.15)

We see from here that

β(2)
n = ln

π
(2)
n

1− π
(2)
n

(8.16)

where
π(2)

n = arg min
π

[
N+ (π) + N− (π) + nH (π)

]

estimates the value π0 = π (β0) . In the last formula

N+ (π) =
n/2∑
i=1

[ρ (−Yi ln π − (1− Yi) ln (1− π))]

= n
2

[
ρ (− ln π) Y

+

n + ρ (− ln (1− π)) (1− Y
+

n )
]

for Y
+

n defined by (8.11) and, similarly,

N− (π) =
n

2

[
ρ (− ln (1− π)) Y

−
n + ρ (− ln π) (1− Y

−
n )

]

for Y
−
n defined by (8.11). Therefore

1

n

(
N+ (π) + N− (π) + nH (π)

)
= pnρ (− ln π) + (1− pn) ρ (− ln (1− π)) + H (π)

where

pn =
Y

+

n + 1− Y
−
n

2
and 1− pn =

Y
−
n + 1− Y

+

n

2
. (8.17)

Consequently,
π(2)

n = arg min
π

L (pn, π) (8.18)

where

L (pn, π) = pnρ (− ln π) + (1− pn) ρ (− ln (1− π)) + G (π) + G (1− π) (8.19)
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for pn given by (8.17), ρ given by (8.13) and G given by (8.15).

Theorem 8.2. The estimators π
(2)
n and β(2)

n are uniquely defined by (8.18) and (8.12)
and satisfy the relations

π(2)
n = pn =

Y
+

n + 1− Y
−
n

2
(8.20)

and

β(2)
n = ln

p
(2)
n

1− p
(2)
n

= ln
Y

+

n + 1− Y
−
n

Y
−
n + 1− Y

+

n

(8.21)

Proof. In view of (8.16), it suffices to prove that (8.20) is the unique minimizer of the
function (8.19) in the domain π ∈ (0, 1) . But

d

dπ
L (pn, π) = −pn

π
ρ′ (− ln π) +

1− pn

1− π
ρ′ (− ln (1− π))

+ ρ′ (− ln π)− ρ′ (− ln (1− π))

= (π − pn)

[
ρ′ (− ln π)

π
+

ρ′ (− ln (1− π))

1− π

]

where ρ′ (y) = (1− y) I (0 < y ≤ 1). Hence the expression in the brackets is

1 + ln π

π
I (π > 1/e) +

1 + ln (1− π)

1− π
I (π < 1− 1/e)

which is positive for every π ∈ (0, 1) . Therefore π = pn is the unique minimum of L (pn, π)
in the domain π ∈ (0, 1) .

We see from (8.9), (8.10) and (8.20), (8.21) that in the model considered in the present
section the estimators β(1)

n of Morgenthaler (1992) and β(2)
n of Bianco and Yohai (1996)

coincide. In the following section we shall denote by β̃n the common value of β(1)
n and β(2)

n

from (8.9) and (8.21) and by π̃n the common value of π
(1)
n and π

(2)
n from (8.10) and (8.20).

It is clear that π̃n differs from π̂n given by (8.8) and, consequently, our median estimator

β̂n differs from the estimator β̃n of Morgenthaler, Bianco and Yohai.

9 Simulations: Binary regressors in univariate

Bernoulli models

In this section we study the model of logistic regression of Section 8 with the binary regres-
sors xi, 1 ≤ i ≤ n, uniformly distributed on {1,−1} and with the independent Bernoulli
responses Yi = 1 and Yi = 0 taken on with the corresponding binomial probabilities

π0 =
eβ0

1 + eβ0
and 1− π0 =

e−β0

1 + e−β0
=

1

1 + eβ0
.
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We restrict ourselves to the parameters β0 ∈ {1/4, 1/2, 1} and the sample sizes n ∈
{50, 100} . The ideal data set

{
xi, Yi ∼ Be

(
exiβ0/

(
1 + exiβ0

))}
, 1 ≤ i ≤ n,

was contamined by applying the binary symmetric channel of Fig. 5.1 to the responses
Yi. Therefore the true data set was defined by

{
xi, Yi ∼ (1− ε) Be

(
exiβ0/

(
1 + exiβ0

))
+ εBe

(
e−xiβ0/

(
1 + e−xiβ0

))}
(9.1)

for 1 ≤ i ≤ n. This means that we considered the contamination introduced in Section
5. The level ε of this contamination was taken from the set {0.1, 0.2} . We compared

the common values β̃n of the estimator of Morgenthaler and that of Bianco and Yohai
introduced in Section 5 and explicitly evaluated for the present model in (8.9), (8.10)

and (8.20), (8.21) with the median estimates β̂n explicitly evaluated in in (8.5) and (8.8).
Namely, we simulated 1000 times the random data (9.1) for 1 ≤ i ≤ n and evaluated the
resulting estimates

β̃n (l) , β̂n (l) , 1 ≤ l ≤ 1000.

In Tables 9.1 and 9.2 we present the possibility to compare the estimates β̃n and β̂n for
n = 50 and n = 100 on the basis of the mean values

β̃0,n =
1

1000

1000∑

l=1

β̃n (l) , β̂0,n =
1

1000

1000∑

l=1

β̂n (l) (9.2)

and the standard deviations

σ̃n =

(
1

1000

1000∑

l=1

[
β̃n (l)− β̃0,n

]2
)1/2

, σ̂n =

(
1

1000

1000∑

l=1

[
β̂n (l)− β̂0,n

]2
)1/2

. (9.3)

We see that in the examined model our estimates β̂n resist better to the increasing con-
tamination levels ε than those of Morgenthaler or Bianco and Yohai in the sense that, in
average, β̂n are closer to the true β0 than β̃n. The dispersions of estimates β̂n around the

mean values β̂0,n exceed the dispersion of β̃n around β̃0,n but for n = 100 these dispersions
are mutually comparable.

From Tables 9.1 and 9.2 one can draw the conclusion that the median estimator β̂n de-
serves to be studied alongside with the estimators of Morgenthaler (1992) and Bianco and
Yohai (1996), because it seems to be more robust with respect to heavy contaminations
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than these two.

β0 = 1/4 β0 = 1/2 β0 = 1

ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2

β̃0,50 0.21 0.14 0.41 0.30 0.80 0.58

σ̃50 0.08 0.08 0.09 0.09 0.10 0.09

β̂0,50 0.36 0.27 0.62 0.47 1.04 0.77

σ̂50 0.17 0.16 0.30 0.21 0.40 0.29

Table 9.1: Means β̃0,n and β̂0,n and standard deviations σ̃n, σ̂n of

1000 realizations of the estimates β̃n, β̂n for the sample size n = 50.

β0 = 1/4 β0 = 1/2 β0 = 1

ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2

β̃0,100 0.19 0.15 0.40 0.31 0.78 0.58

σ̃100 0.04 0.04 0.04 0.04 0.05 0.04

β̂0,100 0.26 0.22 0.48 0.39 0.90 0.67

σ̂100 0.07 0.06 0.09 0.08 0.15 0.11

Table 9.2: Means β̃0,n and β̂0,n and standard deviations σ̃n, σ̂n of

1000 realizations of the estimates β̃n, β̂n for the sample size n = 100.

We verified more precisely the above mentioned hint of better resistance of the median
estimator to contamination of data than the resistance of the robust estimators of Mor-
genthaler and Biancco-Yohai. To this end we evaluated for β0 ∈ {1/4, 1/2, 1} the mean
absolute errors

MAE(n) =
1

1000

1000∑

l=1

∣∣∣β̂n (l)− β0

∣∣∣

of the median estimates β̂n and similar mean absolute errors

MAE(n) =
1

1000

1000∑

l=1

∣∣∣β̃n (l)− β0

∣∣∣

of the coinciding estimates β̃n of Morgenthaler and Bianco-Yohai. The results are in Tables
9.3-9.5.

Let us see which of the estimators β̃n, β̂n is better in the sense of the MAE(n). Looking

first at the middle column in Table 9.4 we see that for no contamination (i.e. ε = 0) β̃100

is considerably better than β̂100. But for ε = 0.2 these two estimators are equivalent and

if ε ≥ 0.3 then β̂100 is better than β̃100. For the larger sample size n = 200 the domination
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of β̃200 over β̂200 at ε = 0 is less dramatic than for n = 100 but the reversed domination

at ε = 0.3 is better visible. For smaller sample size n = 50 the change is opposite and β̃50

in fact dominates β̂50 for all contamination levels 0 ≤ ε ≤ 0.3.
The conclusions deduced from Table 9.4 are even more evident from Table 9.5 because

the difference between the Bernoulli parameters

exiβ0/
(
1 + exiβ0

)
and e−xiβ0/

(
1 + e−xiβ0

)

in (9.1) is larger for β0 = 1 than for β0 = 1/2, i.e. the influence of the contamination in
(9.1) on the observations is larger for β0 = 1 than for β0 = 1/2. Since the same difference
is smaller for β0 = 1/4 than for β0 = 1/2, the conclusions deduced from Table 9.4 are less
evidently supported by Table 9.3.

ε Estimator MAE(50) NEF MAE(100) NEF MAE(200) NEF

0.00 β̃n 0.229 0 0.170 0 0.116 0

β̂n 0.330 4 0.208 0 0.140 0

0.05 β̃n 0.233 0 0.171 0 0.117 0

β̂n 0.317 1 0.206 0 0.135 0

0.10 β̃n 0.227 0 0.167 0 0.119 0

β̂n 0.299 0 0.200 0 0.134 0

0.20 β̃n 0.243 0 0.183 0 0.144 0

β̂n 0.288 2 0.201 0 0.142 0

0.30 β̃n 0.267 0 0.208 0 0.172 0

β̂n 0.312 2 0.212 0 0.166 0

Table 9.3: Mean absolute errors MAE(n) of the two estimators
β̃n and β̂n for the sample size n ∈ {50, 100, 200} and true para-

meter β0 = 1/4. The column NEF presents the number of simula-
tion vectors (Y1, ..., Yn) for which the evaluation of the correspon-

ding estimates failed.
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ε Estimator MAE(50) NEF MAE(100) NEF MAE(200) NEF

0.00 β̃n 0.237 0 0.165 0 0.120 0

β̂n 0.397 7 0.233 0 0.166 0

0.05 β̃n 0.239 0 0.171 0 0.125 0

β̂n 0.359 3 0.227 0 0.154 0

0.10 β̃n 0.240 0 0.181 0 0.139 0

β̂n 0.327 4 0.219 0 0.160 0

0.20 β̃n 0.281 0 0.239 0 0.212 0

β̂n 0.324 3 0.248 0 0.203 0

0.30 β̃n 0.355 0 0.321 0 0.303 0

β̂n 0.368 3 0.301 0 0.279 0

Table 9.4: The same as in Table 9.3 for β0 = 1/2.

ε Estimator MAE(50) NEF MAE(100) NEF MAE(200) NEF

0.00 β̃n 0.259 0 0.188 1 0.125 0

β̂n 0.535 60 0.377 1 0.232 0

0.05 β̃n 0.272 0 0.204 2 0.157 0

β̂n 0.484 36 0.329 2 0.221 0

0.10 β̃n 0.303 0 0.249 2 0.228 0

β̂n 0.437 20 0.314 2 0.246 0

0.20 β̃n 0.438 0 0.430 0 0.427 0

β̂n 0.464 7 0.409 0 0.397 0

0.30 β̃n 0.622 0 0.633 0 0.619 0

β̂n 0.583 3 0.569 0 0.582 0

Table 9.5: The same as in Table 9.3 for β0 = 1.

10 Simulations: Identical regressors in univariate ge-

ometric models

In this section we study the model of logistic regression of Section 7 with the identical
regressors xi = 1, 1 ≤ i ≤ n, and contaminated geometric responses Yi ∼ (1− ε) Fπ0 (y)+
εG(y), for 1 ≤ i ≤ n, where Fπ0 (y) is the geometric distribution function with jumps
(1− π0) πk

0 at k = 0, 1, ... and G(y) is the step distribution function with jumps (7.17)
at k = 1, 2, ... We consider π0 = eβ0/

(
1 + eβ0

)
for the same true parameters β0 ∈

{1/4, 1/2, 1} and the same sample sizes n ∈ {50, 100} as in Section 9. We compare the

MLE βn = ln
(
Y n

)
and the median estimator β̂n defined by (7.7), (7.8). Similarly as in

the previous section, for ε = 0.1 and ε = 0.3, we simulated 1000 times the contaminated
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data sets {Y1, ..., Yn} leading to realizations βn (l) , β̂n (l) , 1 ≤ l ≤ 1000 of the estimates

βn, β̂n. Using these realizations we present in Tables 10.1 and 10.2 the corresponding

means β0,n and β̂0,n and standard deviations σn, σ̂n obtained from obvious modifications
of formulas (9.2) and (9.3). We see from these tables that in heavily contaminated geo-

metric models the median estimator β̂n deviates from the true values β0 in average much

less than the MLE βn, and also that the values of β̂n are less dispersed than those of βn.

Therefore these tables justify the deeper interest in the median estimator β̂n introduced
in this paper.

β0 = 1/4 β0 = 1/2 β0 = 1

ε = 0.1 ε = 0.3 ε = 0.1 ε = 0.3 ε = 0.1 ε = 0.3

β0,50 0.41 0.80 0.61 0.90 1.06 1.18

σ50 0.20 0.56 0.17 0.10 0.12 0.07

β̂0,50 0.46 0.40 0.73 0.64 1.13 1.06

σ̂50 0.12 0.14 0.09 0.12 0.07 0.09

Table 10.1: Means β0,n and β̂0,n and standard deviations σn, σ̂n of

1000 realizations of the estimates βn, β̂n for the sample size n = 50.

β0 = 1/4 β0 = 1/2 β0 = 1

ε = 0.1 ε = 0.3 ε = 0.1 ε = 0.3 ε = 0.1 ε = 0.3

β0,100 0.48 0.84 0.67 0.96 1.07 1.25

σ100 0.24 0.40 0.20 0.35 0.07 0.30

β̂0,100 0.42 0.36 0.71 0.60 1.21 1.04

σ̂100 0.07 0.08 0.05 0.07 0.04 0.05

Table 10.2: Means β0,n and β̂0,n and standard deviations σn, σ̂n of

1000 realizations of the estimates βn, β̂n for the sample size n = 100.

Next follow Tables 10.3-10.5 presenting for β0 ∈ {1/4, 1/2, 1} the mean absolute errors

MAE(n) =
1

1000

1000∑

l=1

|βn (l)− β0|

of the MLE’s βn and similar mean absolute errors

MAE(n) =
1

1000

1000∑

l=1

∣∣∣β̂n (l)− β0

∣∣∣

of the median estimates β̂n. The situation is similar as observed in Tables 9.3-9.5 except

that the mean errors of the estimates β100 and β̂100 in Table 10.4 become equal already for
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ε ≈ 0.1 and the domination of β̂n in the sense of robustness is more evidently demostrated
by these tables than by Tables 9.3-9.5 of Section 9.

ε Estimator MAE (50) MAE (100) MAE (200)

0.00 β̃n 0.156 0.109 0.076

β̂n 0.343 0.271 0.214

0.05 β̃n 0.227 0.202 0.170

β̂n 0.342 0.268 0.208

0.10 β̃n 0.298 0.283 0.306

β̂n 0.344 0.266 0.205

0.20 β̃n 0.439 0.466 0.510

β̂n 0.346 0.258 0.197

0.30 β̃n 0.559 0.696 0.725

β̂n 0.340 0.246 0.189

Table 10.3: Mean absolute errors MAE (n) of the estimators
βn and β̂n for the sample sizes n ∈ {50, 100, 200} and true

parameter β0 = 1/4..

ε Estimator MAE (50) MAE (100) MAE (200)

0.00 β̃n 0.147 0.104 0.072

β̂n 0.333 0.274 0.235

0.05 β̃n 0.206 0.178 0.144

β̂n 0.327 0.266 0.223

0.10 β̃n 0.260 0.239 0.252

β̂n 0.321 0.254 0.212

0.20 β̃n 0.372 0.380 0.409

β̂n 0.317 0.233 0.185

0.30 β̃n 0.466 0.571 0.584

β̂n 0.307 0.217 0.166

Table 10.4: The same as in Table 10.3 for β0 = 1/2.
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ε Estimator MAE(50) MAE(100) MAE(200)

0.00 β̃n 0.136 0.096 0.067

β̂n 0.338 0.290 0.261

0.05 β̃n 0.172 0.144 0.108

β̂n 0.317 0.267 0.231

0.10 β̃n 0.209 0.180 0.178

β̂n 0.298 0.239 0.198

0.20 β̃n 0.284 0.263 0.263

β̂n 0.265 0.188 0.142

0.30 β̃n 0.338 0.386 0.366

β̂n 0.248 0.167 0.117

Table 10.5: The same as in Table 10.3 for β0 = 1.

11 Simulations: Random regressors in bivariate

Bernoulli models

In this section we compare performance of our median estimator β̂n with performances of
two robust estimators discussed in Section 5, namely the Morgenthaler estimator β(1)

n and
the Bianco-Yohai estimator β(2)

n . The first of them is defined as solution of the equation

U
(1)
n (β) = 0 for U

(1)
n (β) defined by (5.6) and the other is defined by (5.10) and (5.12).

The constant c used in (5.10) will be equal to − ln 0.03 ≈ ln 33.3 which is the value used
in the simulations of Bianco and Yohai (1996). We use the same simulated data as used
by Bianco and Yohai, namely the independent realizations

Yi ∼ (1− ε) Be
(
π

(
xT

i β0

))
+ εBe

(
1− π

(
xT

i β0

))
, 1 ≤ i ≤ n

for a fixed β0 = (β01, β02) and xi = (1, ξi) where ξi are random mutually independent
N(0, 1)−distributed regressors. Four different data sources will be used, defined by the
conditions

Eπ
(
xT

i β0

) ∈ {0.2, 0.3, 0.4, 0.5} . (11.1)

These expectations coincide with probabilities Pr (Yi = 1) and are one-one related to the
parameters β0 = (β01, β02) . Values of these parameters corresponding to the conditions
(11.1) are given under the Tables 11.1-11.4 below.

In these tables one can find for ε ∈ {0, 0.05, 0.1, 0.2} and n ∈ {200, 500, 1000} the
mean absolute deviations

MAE(n) =
1

2000

1000∑

l=1

(|βn1 (l)− β01|+ |βn2 (l)− β02|)
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for 1000 simulated realizations of (Y1, ..., Yn) and the corresponding 1000 values βn (l) =
(βn1 (l) , βn2 (l)) of four estimates βn = (βn1, βn2) , namely the MLE defined by (5.7) and

the above mentioned β(1)
n , β(2)

n and β̂n denoted briefly as Morg, B&Y and Median.
Using Tables 11.1-11.4 one compare performances of these four estimators measured

by the corresponding mean absolute errors MAE(n). We see from the first rows that if
there is not contamination (ε = 0) then the best estimator is MLE. For light and medium
contaminations (0 < ε < 0.1) the best is the estimator β(2)

n of Bianco and Yohai (1996).

For heavier contamination (ε ≥ 0.1) the best is our median estimator β̂n.

The Morgenthaler’s β̂n is outperformed by B&Y and Median in each of the present
contamination model. Moreover, it faces evaluation problems when for the minimization
and solving equations are used subroutines from the IMSL numerical package. This is
indicated by the NEF numbers increasing with the contamination level to unacceptable
levels for ε > 0.05. Note that NEF is the count of the simulated realizations of (Y1, ..., Yn)
for which either the estimate cannot be evaluated or it is evaluated but its absolute error
exceeds 50.
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ε (β̂1, β̂2) MAE (200) NEF MAE (500) NEF MAE (1000) NEF

MLE 0.368 0 0.227 0 0.159 0

0 Morg 0.414 0 0.246 0 0.173 0

B&Y 0.591 1 0.297 0 0.203 0

Median 2.003 36 0.869 2 0.515 0

MLE 0.980 0 1.027 0 1.037 0

0.05 Morg 0.776 65 0.778 5 0.761 0

B&Y 0.608 1 0.530 0 0.526 0

Median 1.581 29 0.780 1 0.576 0

MLE 1.297 0 1.371 0 1.415 0

0.1 Morg 2.106 1615 1.775 1900 4.759 2406

B&Y 0.754 0 0.822 0 0.914 0

Median 1.613 17 0.836 2 0.786 0

MLE 2.006 0 2.036 0 2.037 0

0.2 Morg - - - - - -

B&Y 1.892 0 1.954 0 1.954 0

Median 1.814 14 1.704 0 1.731 0

Table 11.1: Mean absolute errors MAE(n) of the four estimators in the model

of Bianco and Yohai with Pr(Y = 1) = 0.2 and the true parameters (β01, β02) =

(−2.82, 2.82). Column NEF presents the numbers of simulated observation

vectors (Y1, ..., Yn) for which the evaluation of the corresponding estimates

failed. If NEF exceeds 10000, neither MAE(n) nor NEF is presented.
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ε (β̂1, β̂2) MAE (200) NEF MAE (500) NEF MAE (1000) NEF

MLE 0.389 0 0.244 0 0.167 0

0 Morg 0.431 0 0.269 0 0.184 0

B&Y 0.597 1 0.327 0 0.218 0

Median 1.864 43 0.980 6 0.531 0

MLE 1.075 0 1.124 0 1.136 0

0.05 Morg 0.811 73 0.771 8 0.779 0

B&Y 0.642 0 0.549 0 0.522 0

Median 1.562 26 0.801 0 0.613 0

MLE 1.428 0 1.494 0 1.542 0

0.1 Morg 1.525 1507 1.428 1858 2.463 2218

B&Y 0.789 0 0.819 0 0.924 0

Median 1.786 37 1.022 1 0.811 0

MLE 2.109 0 2.167 0 2.172 0

0.2 Morg - - - - - -

B&Y 1.901 0 2.045 0 2.049 0

Median 1.905 10 1.795 0 1.789 0

Table 11.2: The same as in Table 11.1 for Pr(Y = 1) = 0.3 corresponding to the

parameters (β01, β02) = (−2.16, 3.71).
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ε (β̂1, β̂2) MAE (200) NEF MAE (500) NEF MAE (1000) NEF

MLE 0.376 0 0.241 0 0.168 0

0 Morg 0.417 0 0.267 0 0.181 0

B&Y 0.571 0 0.321 0 0.210 0

Median 1.926 51 0.942 3 0.518 0

MLE 0.998 0 1.038 0 1.054 0

0.05 Morg 0.681 71 0.706 10 0.720 0

B&Y 0.596 0 0.510 0 0.489 0

Median 1.529 32 0.835 2 0.547 0

MLE 1.320 0 1.386 0 1.426 0

0.1 Morg 1.268 1417 1.242 1803 2.359 2160

B&Y 0.701 0 0.762 0 0.834 0

Median 1.583 38 0.896 0 0.755 0

MLE 1.927 0 1.990 0 1.994 0

0.2 Morg - - - - - -

B&Y 1.716 1 1.858 0 1.870 0

Median 1.671 18 1.600 0 1.628 0

Table 11.3: The same as in Table 11.1 for Pr(Y = 1) = 0.4 corresponding to the

parameters (β01, β02) = (−1.16, 4.20).
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ε (β̂1, β̂2) MAE (200) NEF(50) MAE (500) NEF MAE (1000) NEF

MLE 0.383 0 0.234 0 0.168 0

0 Morg 0.424 0 0.260 0 0.181 0

B&Y 0.567 1 0.314 0 0.209 0

Median 1.593 39 0.774 0 0.480 0

MLE 0.885 0 0.894 0 0.892 0

0.05 Morg 0.642 75 0.628 11 0.625 0

B&Y 0.571 0 0.457 0 0.442 0

Median 1.335 31 0.733 5 0.519 0

MLE 1.139 0 1.174 0 1.192 0

0.1 Morg 0.948 1499 0.956 1788 1.616 2122

B&Y 0.647 2 0.679 0 0.717 0

Median 1.446 29 0.768 0 0.647 0

MLE 1.613 0 1.662 0 1.654 0

0.2 Morg - - - - - -

B&Y 1.420 0 1.557 0 1.555 0

Median 1.413 9 1.359 0 1.375 0

Table 11.4: The same as in Table 11.1 for Pr(Y = 1) = 0.5 corresponding to the

parameters (β01, β02) = (0, 4.36).
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