MONTE CARLO METHOD AND VARIANCE REDUCTION TECHNIQUES.

Domingo Morales González

d.morales@umh.es

Universidad Miguel Hernández de Elche

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES - p. 1/5

- 1. Introduction.
- 2. Hit or Miss Monte Carlo.
- 3. Monte Carlo method.
- 4. Antithetic variates
- 5. Control variates
- 6. Stratified sampling
- 7. Importance sampling
- 8. Conditional Monte Carlo
- 9. Number of replications
- 10. Example

Monte Carlo integration: estimate by simulation expectations of the form

$$\theta = E[\phi(X)] = E[\phi(X_1, \dots, X_k)],$$

where

- 1. $\phi : (\mathbf{R}^k, B_k) \longrightarrow (\mathbf{R}, B)$ is measurable.
- 2. $X = (X_1, \ldots, X_k)$ is a random variable with dimension k.

Estimation procedure: Given the simulated sample

$$X^{(1)} = (X_1^{(1)}, \dots, X_k^{(1)}), \dots, X^{(n)} = (X_1^{(n)}, \dots, X_k^{(n)}),$$

estimator is

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \phi(X^{(i)}).$$

By applying the Central Limit Theorem, we get

$$\widehat{\theta} \sim N(\mu = \theta, \sigma^2 = \frac{\tau}{n}).$$

9 A 95% confidence interval of θ is

$$\widehat{\theta} \pm 1.96 \frac{\sqrt{\tau}}{\sqrt{n}}.$$

Remark:

- 1. The width of the interval is proportional to $\frac{1}{\sqrt{n}}$.
- 2. To reduce width to the its half, we have multiply the number of observations by 4.
- 3. Variance reduction techniques try to reduce the value of τ .
- 4. An adequate design of a simulation experiment can improve the precision of estimations for a given computational cost and viceversa.

Example: Estimate the integral

$$\int_0^1 \sqrt{1-x^2} \, dx.$$

Note: The target of the presented examples is to analyze the precision of estimators. For this reason we will consider integrals with known numerical value. In this example, numerical value is $\frac{\pi}{4}$.

- Integral is the area in the first quadrant of the unity circle.
- Solution We generate uniform random points in the unity square $(0,1) \times (0,1)$.

- \bullet *n* is the number of generated points.
- Image: R is the number of points in the region A under the curve $y = \sqrt{1 x^2}$ (number of hits).
- \square R/n is the estimation of the probability of hitting the region A.
- $V[\widetilde{\pi}] = 2.697/n$

- Let $\phi: (a, b) \longrightarrow \mathbb{R}^+$ be a measurable function such that $0 \le \phi(x) \le c$ for all *x* ∈ (*a*, *b*).

We want to estimate

$$\theta = \int_{a}^{b} \phi(x) \, dx;$$

this is to say, the area under the curve $\phi(x)$.

- Generate pairs (U, V), where $U \sim \mathcal{U}(a, b)$ y $V \sim \mathcal{U}(0, c)$.
- *R* is the number of points (U, V) under the curve $\phi(x)$.
- \square *n* is the number of generated points.

The hit or miss Monte Carlo estimators is

$$\widetilde{\theta} = c(b-a)\widehat{P}(V \le \phi(U)) = c(b-a)\frac{R}{n}.$$

•
$$E[\tilde{\theta}] = \theta$$

• $V[\tilde{\theta}] = \frac{\theta}{n}[c(b-a) - \theta]$

Let $\phi : (\mathbf{R}^k, \mathcal{B}_k) \longrightarrow (\mathbf{R}, \mathcal{B})$ be measurable. The pure Monte Carlo method estimates

$$\theta = E[\phi(X)] = \int_{\mathbf{R}^k} \phi(x) f(x) \, dx$$

with

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \phi(X^{(i)}),$$

where $X^{(1)}, \ldots, X^{(n)}$ is a random sample simulated from $X = (X_1, \ldots, X_n) \sim f(\cdot).$

Corollary.

•
$$E[\widehat{\theta}] = \theta$$

• $V[\widehat{\theta}] = \frac{1}{n} \int_{\mathbb{R}^n} (\phi(x) - \theta)^2 f(x) dx$

Example
$$(I = \int_{0}^{1} \sqrt{1 - x^{2}} dx, \text{continuation}).$$

$$\int_{0}^{1} \sqrt{1 - x^{2}} f_{\mathcal{U}(0,1)}(x) dx = E[\sqrt{1 - U^{2}}]$$

$$U \sim \mathcal{U}(0, 1).$$

$$\text{Let } U_{1}, \dots, U_{n} \text{ be i.i.d. } \mathcal{U}(0, 1).$$

$$\widehat{I} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{1 - U_{i}^{2}}$$

$$V[\widehat{I}] = 0.0498/n.$$

$$\widehat{\pi} = 4\widehat{I}$$

$$V[\widehat{\pi}] = 0.7968/n.$$

Remark. The same amount of generated random numbers $\mathcal{U}(0,1)$ should be considered when comparing simulation methods.

$$V[\text{Hit or Miss Monte Carlo}] = \frac{2.697}{n}$$
$$V[\text{Pure Monte Carlo}] = \frac{0.7968}{2n} = \frac{0.398}{n}$$

For hit or miss Monte Carlo the estimator variance is approximately 7 times greater than for pure Monte Carlo.

Proposition. Let
$$\phi : (a, b) \longrightarrow \mathbb{R}^+$$
,
 $0 \le \phi(\cdot) \le c, \theta = \int_a^b \phi(x) \, dx$. Then

 $V[\hat{\theta}] \leq V[\tilde{\theta}]; \quad \text{with} \quad "=" \iff \phi(\cdot) \equiv c.$

Conclusion. Hit or miss Monte Carlo **never** should be used, because its variance is always greater than the one of pure Monte Carlo.

Problem: estimate

$$\theta = E[\phi(X)] = E[\phi(X_1, \dots, X_k)];$$

Basic solution:

•
$$Y_1 = \phi(X_1^{(1)}, \dots, X_k^{(1)}), \dots, Y_n = \phi(X_1^{(n)}, \dots, X_k^{(n)})$$

• $\hat{\theta} = \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$
• $E[\bar{Y}] = \theta$

•
$$L[I] = 0$$

• $V[\bar{Y}] = \frac{V[Y_i]}{n}$

Target: Reduce $V[\bar{Y}]$.

Idea: Let $Y_1 \in Y_2$ be identically distributed random variables with $E[Y_i] = \theta$. Then

$$E\left[\frac{Y_1+Y_2}{2}\right] = \theta,$$

$$V\left[\frac{Y_1+Y_2}{2}\right] = \frac{1}{2}V[Y_1] + \frac{1}{2}Cov(Y_1,Y_2).$$

Conclusion: It is preferred that Y_1 and Y_2 be negatively correlated than they be independent.

Definition.

• Let X_1, \ldots, X_n be independent random variables such that $X_i \sim F_i$.

•
$$X_i = F_i^{-1}(U_i)$$
, where $U_1, ..., U_k$ i.i.d. $\mathcal{U}(0, 1)$.

 Y_1 and Y_2 are **antithetic** if and only if

$$Y_1 = \phi \left(F_1^{-1}(U_1), \dots, F_k^{-1}(U_k) \right)$$

$$Y_2 = \phi \left(F_1^{-1}(1 - U_1), \dots, F_k^{-1}(1 - U_k) \right),$$

where $\phi : (\mathbf{R}^k, \mathcal{B}_k) \longrightarrow (\mathbf{R}, \mathcal{B})$:

measurable

be monotonously increasing (or decreasing) in all its arguments.

Corollary. If Y_1 and Y_2 are antithetic, then they are identically distributed and dependent.


```
Proposition. If Y_1 and Y_2 are antithetic, then Cov(Y_1, Y_2) \le 0.
```

Definition. The **antithetic estimator** of θ is

$$\widehat{\theta}_{A} = \frac{1}{2n} \sum_{i=1}^{n} \left(Y_{i}^{(1)} + Y_{i}^{(2)} \right),$$

$$Y_{i}^{(1)} = \phi(F_{1}^{-1}(U_{1}^{(i)}), \dots, F_{k}^{-1}(U_{k}^{(i)}))$$

$$Y_{i}^{(2)} = \phi(F_{1}^{-1}(1 - U_{1}^{(i)}), \dots, F_{k}^{-1}(1 - U_{k}^{(i)}))$$

$$U_{1}^{(1)}, \dots, U_{k}^{(1)}, U_{1}^{(2)}, \dots, U_{k}^{(2)}, \dots, U_{1}^{(n)}, \dots, U_{k}^{(n)} \text{ son v.a.i.i.d. } \mathcal{U}(0, 1).$$
Corollary.

$$E[\hat{\theta}_A] = \theta, \qquad V[\hat{\theta}_A] = \frac{1}{2n} V[Y_i^{(1)}] + \frac{1}{2n} \text{Cov}(Y_i^{(1)}, Y_i^{(2)}).$$

Corollary. $V[\hat{\theta}_A] \leq \frac{1}{2}V[\hat{\theta}]$. **Remark.** The estimator $\hat{\theta}_A$ is preferred to $\hat{\theta}$ because it has lower variance. Variance is reduced at least to a half.

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES - p. 16/5

Example.
$$\theta = \int_0^1 \sqrt{1 - x^2} \, dx$$
, continuation).
The antithetic estimator of θ is

$$\widehat{\theta}_A = \frac{1}{2n} \sum_{i=1}^n \left(\sqrt{1 - U_i^2} + \sqrt{1 - (1 - U_i)^2} \right).$$

$$E[\widehat{\theta}_A] = \theta = \pi/4, \qquad V[\widehat{\theta}_A] = \frac{0.01355}{2n},$$

Observación. Based on n generated uniform random numbers, we have

$$V[\hat{\theta}] = 0.0498/n, \qquad V[\hat{\theta}_A] = 0.006775/n.$$

Conclusion: Variance of $\hat{\theta}_A$ is approximately 7 times lower than variance of $\hat{\theta}$.

• We want to estimate $\theta = E[\phi(X_1, \dots, X_k)].$

We have a measurable function

$$\psi: (\boldsymbol{R}^k, \mathcal{B}_k) \longrightarrow (\boldsymbol{R}, \mathcal{B})$$

such that $E[\psi(X)] = E[\psi(X_1, \ldots, X_k)] = \mu$ is known.

We define, for all $a \in \mathbf{R}$,

$$W(X_1, \dots, X_k) = \phi(X_1, \dots, X_k) - a(\psi(X_1, \dots, X_k) - \mu).$$

$$E[W(X_1, \dots, X_k)] = \theta$$

$$V[W(X_1, \dots, X_k)] = V[\phi(X)] + a^2 V[\psi(X)]$$

$$- 2a \operatorname{Cov}(\phi(X), \psi(X)),$$

where
$$X = (X_1, ..., X_k)$$
.

Corollary. V[W] is minimized in

$$a = \frac{\operatorname{Cov}(\phi(X), \psi(X))}{V[\psi(X)]},$$

and for this value of a we get

$$V[W] = V[\phi(X)] - \frac{\operatorname{Cov}(\phi(X), \psi(X))^2}{V[\psi(X)]}.$$

Definition. Let

$$X^{(1)} = (X_1^{(1)}, \dots, X_k^{(1)})$$

:
$$X^{(n)} = (X_1^{(n)}, \dots, X_k^{(n)})$$

be a random sample simulated from $X = (X_1, \ldots, X_k)$.

The **control estimator** of θ is

$$\widehat{\theta}_C = \frac{1}{n} \sum_{i=1}^n \left[\phi(X^{(i)}) - a(\psi(X^{(i)}) - \mu) \right]$$

Definition. Given three control variates ψ_1 , ψ_2 and ψ_3 such that $E[\psi_1] = \mu_1$, $E[\psi_2] = \mu_2$ and $E[\psi_3] = \mu_3$, the control estimator is

$$\widehat{\theta}_C = \frac{1}{n} \sum_{i=1}^n \left[\phi(X^{(i)}) - a_1(\psi_1(X^{(i)}) - \mu_1) - a_2(\psi_2(X^{(i)}) - \mu_2) - a_3(\psi_3(X^{(i)}) - \mu_3) \right]$$

Corollary.

Miguel Hernånd

1.
$$E[\widehat{\theta}_C] = \theta$$
,
2. $V[\widehat{\theta}_C] = \frac{V[\phi(X)]}{n} - \frac{\operatorname{Cov}(\phi(X), \psi(X))^2}{nV[\psi(X)]}, \quad V[\widehat{\theta}_C] \le V[\widehat{\theta}].$

Remark. Optimal value of a cannot be calculated because $Cov(\phi(X), \psi(X))$ is unknown.

This problem can be solved as follows:

- 1. Do previously a pilot simulation to estimate $Cov(\phi(X), \psi(X))$ and use the estimated value of "a".
- 2. Estimate "a" directly from the simulated data.
- First method has the disadvantage of being more slow.
- Second method has the disadvantage that "a" is not a constant any more to became a function of $X = (X_1, \ldots, X_k)$, so that $\hat{\theta}_C$ is not unbiased.

We want to estimate by simulation

$$\theta = \int_{a}^{b} \phi(x) \, dx,$$

where $\phi : \mathbf{R} \longrightarrow \mathbf{R}$ is measurable and positive.

• We want to estimate the area under the curve $y = \phi(x)$, between x = a and x = b.

Procedure:

1. Divide the interval (a, b) in k disjoint subintervals

$$(\alpha_0, \alpha_1], (\alpha_1, \alpha_2], \ldots, (\alpha_{k-1}, \alpha_k),$$

with $\alpha_0 = a$ and $\alpha_k = b$.

2. Variability of $\phi(x)$ within each subinterval is lower than in the interval (a, b).

Idea: Estimate by pure Monte Carlo method

$$\theta_j = \int_{\alpha_{j-1}}^{\alpha_j} \phi(x) dx,$$

to obtain
$$\theta = \sum_{j=1}^{k} \theta_j$$
.

Monte Carlo method to estimate θ_j

$$\theta_j = (\alpha_j - \alpha_{j-1}) \int_{\alpha_{j-1}}^{\alpha_j} \phi(x) \frac{1}{\alpha_j - \alpha_{j-1}} dx$$
$$= (\alpha_j - \alpha_{j-1}) \int_{\alpha_{j-1}}^{\alpha_j} \phi(x) f_{\mathcal{U}(\alpha_{j-1}, \alpha_j)}(x) dx$$

The estimator of θ_j is

$$\widehat{\theta}_j = (\alpha_j - \alpha_{j-1}) \frac{1}{n_j} \sum_{i=1}^{n_j} \phi \left(\alpha_{j-1} + (\alpha_j - \alpha_{j-1}) U_{ij} \right)$$

where
$$U_{ij}$$
 i.i.d. $\mathcal{U}(0, 1)$
Definition: $\widehat{\theta}_E = \sum_{j=1}^k \widehat{\theta}_j$.
 $E\left[\widehat{\theta}_E\right] = \sum_{j=1}^k E\left[\widehat{\theta}_j\right] = \sum_{j=1}^k \theta_j = \theta$
 $V\left[\widehat{\theta}_E\right] = \sum_{j=1}^k V\left[\widehat{\theta}_j\right] = \sum_{j=1}^k \frac{(\alpha_j - \alpha_{j-1})^2}{n_j} V\left[\phi(X_{ij})\right],$

whre $X_{ij} \sim \mathcal{U}(\alpha_{j-1}, \alpha_j)$, and because of

Miguel Hernández

$$V[\phi(X_{ij})] = \frac{1}{\alpha_j - \alpha_{j-1}} \int_{\alpha_{j-1}}^{\alpha_j} \phi^2(x) dx$$
$$- \left(\frac{1}{\alpha_j - \alpha_{j-1}} \int_{\alpha_{j-1}}^{\alpha_j} \phi(x) dx\right)^2,$$

it holds

Miguel Hernånde:

$$V\left[\widehat{\theta}_{E}\right] = \sum_{j=1}^{k} \frac{1}{n_{j}} \left\{ \left(\alpha_{j} - \alpha_{j-1}\right) \int_{\alpha_{j-1}}^{\alpha_{j}} \phi^{2}(x) dx - \left(\int_{\alpha_{j-1}}^{\alpha_{j}} \phi(x) dx\right)^{2} \right\}$$

Remark. When using stratified sampling we have to choose k, $\{\alpha_j\}$ and $\{n_j\}$.

Problem: Given n, k and $\{\alpha_j\}$. Find $\{n_j\}$ such that $V\left[\widehat{\theta}_E\right]$ be minimized. This is to say

$$\begin{cases} \text{minimize} & V\left[\widehat{\theta}_E\right] = \sum_{j=1}^k \frac{a_j}{n_j}\\ \text{Restricted to} & \sum_{j=1}^k n_j = n \end{cases}$$

where
$$a_j = (\alpha_j - \alpha_{j-1})^2 V [\phi(X_{ij})].$$

Solution:

$$n_j \propto +\sqrt{a_j} = (\alpha_j - \alpha_{j-1}) \sqrt{V[\phi(X_{ij})]},$$

where $X_j \sim \mathcal{U}(\alpha_{j-1}, \alpha_j)$

Remark. $V[\phi(X_{ij})]$ is unknown; however the conclusion is clear: n_j should be large if size of stratum is large or if variability within the stratum is large.

How to proceed:

- 1. First, select the $\{\alpha_j\}$ in such a way that the curve $y = \phi(x)$ be approximately constant in the intervals (α_{j-1}, α_j) . This is to say, in such a way that $V[\phi(X_{ij})] \cong$ constant. Second, select n_j proportionally to the length of the interval $(\alpha_j - \alpha_{j-1})$.
- 2. Estimate $V[\phi(X_j)]$ with a pilot simulation. Choose n_j according to the formula $n_j \propto (\alpha_j \alpha_{j-1}) \sqrt{\widehat{V}[\phi(X_{ij})]}$.

We want to estimate by simulation

$$\theta = \int_{a}^{b} \phi(x) \, dx,$$

where $\phi \colon \mathbf{R} \longrightarrow \mathbf{R}^+$ is measurable and positive.

• Let $f(\cdot)$ be a density function with support in the interval (a, b), then

$$\theta = \int_{a}^{b} \phi(x) dx = \int_{a}^{b} \frac{\phi(x)}{f(x)} f(x) dx = E\left[\frac{\phi(X)}{f(X)}\right],$$

where $X \sim f(\cdot)$.

If X_1, \ldots, X_n is a simulated random sample from $f(\cdot)$, we can estimate θ by the pure Monte Carlo method. We have

$$\widehat{\theta}_I = \frac{1}{n} \sum_{i=1}^n \frac{\phi(X_i)}{f(X_i)}$$

(1)
$$E\left[\widehat{\theta}_{I}\right] = \theta$$

(2) $V\left[\widehat{\theta}_{I}\right] = \frac{1}{n} \left\{ \int_{a}^{b} \frac{\phi^{2}(x)}{f(x)} dx - \theta^{2} \right\}$

Remarks.

• If
$$f(x) = \frac{\phi(x)}{\theta} \Rightarrow V\left[\hat{\theta}_I\right] = 0$$
.
 $f(x) = \frac{\phi(x)}{\theta} I_{(a,b)}(x)$ is the optimal selection.
As θ is unknown, we can choose $f(x)$ with a shape similar to $\phi(x)$.

The "importance sampling method" is so called because $\phi(\cdot)$ is evaluated more frequently in the places where it is more beneficial.

Remark.

Stratified sampling estimation method is a particular case of the importance sampling method, when *f* is a mixture of uniform distributions

$$f(x) = \sum_{j=1}^{k} \frac{n_j}{n} \frac{1}{(\alpha_j - \alpha_{j-1})} I_{(\alpha_{j-1}, \alpha_j)}(x)$$

Example (Estimation of $P(\mathcal{N}(0, 1) < a))$

We want to estimate

$$\theta = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx = \int_{-\infty}^{a} \phi(x) \, dx.$$

A probability density function with shape similar to $\phi(\cdot)$ is the logistic p.d.f. with mean 0 and variance 1; this is to say

$$f(x) = \frac{\pi e^{-\frac{\pi x}{\sqrt{3}}}}{\sqrt{3} \left(1 + e^{-\frac{\pi x}{\sqrt{3}}}\right)^2}.$$

We can write

$$\theta = \int_{-\infty}^{a} \frac{k\phi(x)}{f(x)} \frac{f(x)}{k} \, dx,$$

where $k \in \mathbf{R}$ is such that $g(x) = \frac{f(x)}{k}$ is a p.d.f. in $(-\infty, a)$. Therefore

$$k = \int_{-\infty}^{a} \frac{\pi e^{-\frac{\pi x}{\sqrt{3}}}}{\sqrt{3}\left(1 + e^{-\frac{\pi x}{\sqrt{3}}}\right)^2} \, dx = \frac{1}{1 + e^{-\frac{\pi a}{\sqrt{3}}}}.$$

Finally, the estimator of θ is

$$\widehat{\theta} = \frac{1}{n\left(1 + e^{-\frac{\pi x}{\sqrt{3}}}\right)} \sum_{i=1}^{n} \frac{\phi(x_i)}{f(x_i)},$$

where x_1, \ldots, x_n are random numbers from the p.d.f. $g(\cdot)$.

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES - p. 33/5

Generation of $X \sim g(\cdot)$.

To generate X we can combine the *rejection* and the *inversion* methods.

1. We apply the inversion method to generate logistic random numbers with mean 0 and variance 1.

$$u = F(x) = \frac{1}{1 + e^{-\frac{\pi x}{\sqrt{3}}}} \Leftrightarrow \frac{\pi x}{\sqrt{3}} = -\log\frac{1 - u}{u}.$$

Generation formula is

$$x = F^{-1}(u) = -\frac{\sqrt{3}}{\pi} \log \frac{1-u}{u}.$$

2. We apply a rejection criterium to obtain values of X with logistic distribution truncated at $(-\infty, a)$.

Algorithm:

1. Generate $U \sim \mathcal{U}(0, 1)$

2. Do
$$X = -\frac{\sqrt{3}}{\pi} \ln \frac{1-u}{u}$$

- 3. If X > a, go to 1.
- 4. Output: X

Problem: estimate

$$\theta = E[Y] = E[\phi(X)] = E[\phi(X_1, \dots, X_k)],$$

where $\phi : (\mathbf{R}^k, B_k) \longrightarrow (\mathbf{R}, B)$ is measurable

Basic solution:

- $X^{(1)} = (X_1^{(1)}, \dots, X_k^{(1)}), \dots, X^{(n)} = (X_1^{(n)}, \dots, X_k^{(n)})$ is a random sample from X.
 - Monte Carlo Estimator

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \phi(X^{(i)}) = \frac{1}{n} \sum_{i=1}^{n} Y^{(i)}.$$

Target: Reduce $V[\hat{\theta}]$. **Idea:** Conditioning.

$$E[Y] = E[E[Y / Z]],$$

$$V[Y] = E[V[Y / Z]] + V[E[Y / Z]],$$

Let $Z^{(1)}, \ldots, Z^{(n)}$ be random variables such that $E[Y^{(i)} / Z^{(i)}]$ can be easily calculated. Then:

$$E\left[E[Y^{(i)} / Z^{(i)}]\right] = E[Y^{(i)}] = \theta,$$

$$V\left[E[Y^{(i)} / Z^{(i)}]\right] = V[Y^{(i)}] - E\left[V[Y^{(i)} / Z^{(i)}]\right]$$

$$\leq V[Y^{(i)}].$$

The conditional Monte Carlo estimator of θ is:

$$\widehat{\theta}_Z = \frac{1}{n} \sum_{i=1}^n E[Y^{(i)} / Z^{(i)}].$$

For the conditional estimator, it holds

 $V[\widehat{\theta}_Z] \le V[\widehat{\theta}].$

Example 8.1.

 $W \sim \mathcal{P}o(\lambda)$ and $X \sim \mathcal{B}e(W, W^2 + 1)$.

The algorithm to calculate the *Monte Carlo estimator* is:

1. Generate *n* pairs $(W^{(i)}, X^{(i)}), i = 1, ..., n;$

 $W^{(i)} \sim \mathcal{P}o(\lambda), X^{(i)} \sim \mathcal{B}e(W^{(i)}, W^{(i)2} + 1).$

2. Calculate
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}$$
.

Conditional Monte Carlo method:

$$E[X / W = w] = \frac{w}{w^2 + w + 1}$$

$$\theta = \sum_{w=0}^{\infty} E[X / W = w] \frac{e^{-\lambda} \lambda^w}{w!}$$

The algorithm to calculate the *conditional Monte Carlo estimator* is:

1. Generate *n* values $W^{(i)} \sim \mathcal{P}o(\lambda)$.

2. Calculate
$$\hat{\theta}_W = \frac{1}{n} \sum_{i=1}^n \frac{W^{(i)}}{W^{(i)2} + W^{(i)} + 1}$$
.

Another case:

- For j = 1, 2, ..., there exist random variables $Z_j^{(1)}, ..., Z_j^{(n)}$ such that $E[Y^{(i)} / Z_j^{(i)}]$ be calculable.
- Let $p_1, p_2, ...$ be such that $p_j \ge 0$, $\sum_{j=1}^{\infty} p_j = 1$.
 - The conditional Monte Carlo estimator of θ is:

$$\widehat{\theta}_{p,Z} = \sum_{j=1}^{\infty} p_j \frac{1}{n} \sum_{i=1}^{n} E[Y^{(i)} / Z_j^{(i)}]$$

Proposition.

$$E\left[\sum_{j=1}^{\infty} p_j E[y / Z_j]\right] = E[Y], \qquad V\left[\sum_{j=1}^{\infty} p_j E[y / Z_j]\right] \le V[Y].$$

Example 8.2. Let $X_1, X_2 \dots$ be independent exponential random variables with parameters $\lambda_1, \lambda_2, \dots$ respectively. Estimate

$$\theta = P(X_1 + \ldots + X_k \le t) = E[\phi(X_1, \ldots, X_k)],$$

where

$$Y = \phi(X_1, \dots, X_k) = \begin{cases} 1 & \text{if } \sum_{\ell=1}^k X_\ell \le t \\ 0 & \text{otherwise} \end{cases}$$

Solution: Let the random sample

$$X^{(1)} = (X_1^{(1)}, \dots, X_k^{(1)})$$

:
$$X^{(n)} = (X_1^{(n)}, \dots, X_k^{(n)})$$

simulated from $X = (X_1, \ldots, X_k)$.

Pure Monte Carlo estimator is:

$$\widehat{\theta}_{1} = \frac{1}{n} \sum_{i=1}^{n} \phi(X^{(i)}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

$$= \frac{\text{number of samples such that } \sum_{\ell=1}^{n} X_{\ell} \leq t}{n}$$

We are interested in finding the Monte Carlo estimator conditioned to

$$\varepsilon_j(X) = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_k)$$

Solution:

$$E[Y / \varepsilon_j(X)] = P\left(\sum_{\ell=1}^k X_\ell \le t / \varepsilon_j(X)\right)$$
$$= F_j\left(t - \sum_{\ell \ne j}^k X_\ell\right),$$

where

$$F_j(s) = 1 - \exp\{-\lambda_j s\}, \quad s > 0.$$

The conditional Monte Carlo estimator is:

$$\widehat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k p_j F_j \left(t - \sum_{\ell \neq j}^k X_\ell^{(i)} \right)$$

where $p_j \ge 0, j = 1, \dots, k$ y $\sum_{j=1}^k p_j = 1$. Monte carlo method an variance reduction techniques – p. 44/5

- Generate *n* i.i.d. random variables, $Y^{(1)}, \ldots, Y^{(n)}$, with mean μ and variance σ^2 .
- Use $\overline{Y}_n = \frac{1}{n} \left(Y^{(1)} + \ldots + Y^{(n)} \right)$ to estimate μ .
- The precision of the estimator can be measure with its variance

$$V[\bar{Y}_n] = E\left[(\bar{Y}_n - \mu)^2\right] = \frac{\sigma^2}{n}.$$

Problem: Find the sample size n such that $V[\bar{Y}_n]$ be sufficiently small.

Solution: If random variables $Y^{(i)}$ are normal, the problem can be solved with a 95% confidence interval for μ

$$\bar{Y}_n \pm \frac{1.96\sigma}{\sqrt{n}}.$$

"find n such that $\frac{1.96\sigma}{\sqrt{n}} \leq \varepsilon$ ".

Procedure:

As σ^2 is unknown, simulate initially m variables $Y^{(1)}, \ldots, Y^{(m)}$, where $m \ge 30$ (in order to make the Central Limit Theorem applicable) and estimate σ^2 with

$$\hat{\sigma}_m^2 = \frac{1}{m-1} \sum_{i=1}^m \left(Y^{(i)} - \bar{Y}_m \right)^2.$$

If ε the desired precision level, then

$$\frac{1.96^2 \widehat{\sigma}_m^2}{n} \le \varepsilon^2 \iff n \ge \left(\frac{1.96 \widehat{\sigma}_m}{\varepsilon}\right)^2;$$

this is to say,

$$n = \left[\left(\frac{1.96\hat{\sigma}_m}{\varepsilon} \right)^2 \right] + 1.$$

Finally,

- If n > m, then generate n m new random variables $Y^{(i)}$.
- If $n \le m$, then do not generate new random variables $Y^{(i)}$.

Example.

Estimate by simulation the parameter

 $\theta = P\left(\mathcal{N}(0,1) < 1\right),$

whose value is known to be $\theta = 0.8413$.

Example 10.1.

$$\theta = \int_{-\infty}^{\infty} \phi(x) f_{\mathcal{N}(0,1)}(x) dx,$$

where $\phi(x) = I_{(-\infty,1)}(x)$. In this case, Monte Carlo estimator is

$$\widehat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n \phi(X_i) = \frac{\text{Núm. de } X_i < 1}{n},$$

where X_1, \ldots, X_n are i.i.d. $\mathcal{N}(0, 1)$. We have

$$V\left[\widehat{\theta}_1\right] = \frac{0,1335}{n}.$$

To obtain a precision of 10^{-3} with a 95% confidence we need $n = [(1.96)^2 0.1335 \cdot 10^6] + 1 = 512854$ simulated random variables.

Example 10.2.

$$\theta = 1 - \frac{1}{2} P\left(|\mathcal{N}(0,1)| > 1\right) = \int_{-\infty}^{\infty} \phi(x) f_{\mathcal{N}(0,1)}(x) dx,$$
 where $\phi(x) = 1 - \frac{1}{2} I_{(-\infty,-1)\cup(1,\infty)}(x).$

In this case, Monte Carlo estimator is

$$\widehat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n \phi(x_i) = 1 - \frac{1}{2} \frac{R_2}{n},$$

where the x_i are random numbers from a $\mathcal{N}(0, 1)$ pd.f. and R_2 is the number of x_i such that $|x_i| > 1$. We have

$$V\left[\widehat{\theta}_2\right] = \frac{0.05416}{n}$$

Miguel Hernández

To obtain a precision of 10^{-3} with a 95% confidence we need $n = [(1.96)^2 0.05416 \cdot 10^6] + 1 = 208062$ simulated random variables.

Example 10.3. $\theta = \frac{1}{2} + I$, $I = P(0 < \mathcal{N}(0, 1) < 1) = \int_{-\infty}^{\infty} \phi(x) f_{\mathcal{N}(0, 1)}(x) dx$ where $\phi(x) = I_{(0,1)}(x)$. In this case, Monte Carlo estimator is $\hat{\theta}_3 = \frac{1}{2} + \hat{I}_3$, where $\widehat{I}_3 = \frac{1}{n} \sum_{i=1}^n \phi(x_i) = \frac{R_3}{n}$ x_1, \ldots, x_n are $\mathcal{N}(0, 1)$ random numbers. R_3 is the number of $x_i \in (0, 1)$. We have $V\left[\widehat{\theta}_3\right] = \frac{0.2248}{2}$

To obtain a precision of 10^{-3} with a 95% confidence we need $n = [(1.96)^2 0.2248 \cdot 10^6] + 1 = 863647$ simulated random variables.

Example 10.4. $\theta = \frac{1}{2} + I$, $I = P(0 < \mathcal{N}(0, 1) < 1) = \int_{-\infty}^{\infty} \phi(x) f_{\mathcal{U}(0, 1)}(x) dx$

where
$$f_{\mathcal{U}(0,1)}(x) = I_{(0,1)}(x)$$
 y $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.
Monte Carlo estimator of θ is

$$\widehat{\theta}_4 = \frac{1}{2} + \widehat{I}_4$$

where

$$\widehat{I}_4 = \frac{1}{n\sqrt{2\pi}} \sum_{i=1}^n e^{-\frac{1}{2}U_i^2}$$

and U_1, \ldots, U_n are i.i.d. $\mathcal{U}(0, 1)$.

We get

$$\mathcal{V}[\widehat{\theta}_4] = \frac{0.00238931}{n}.$$

To obtain a precision of 10^{-3} with a 95% confidence we need $n = [(1.96)^2 0.0023893 \cdot 10^6] + 1 = 9179$ simulated random variables.

Note: In Examples 10.5 and 10.6 estimator $\hat{\theta}_4$ has been improved.

Example 10.5. $\theta = \frac{1}{2} + I$,

$$I = P(0 < \mathcal{N}(0, 1) < 1) = \int_{-\infty}^{\infty} \phi(x) f_{\mathcal{U}(0, 1)}(x) dx$$

where
$$f_{\mathcal{U}(0,1)}(x) = I_{(0,1)}(x)$$
 y $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

Antithetic estimator of θ is

$$\widehat{\theta}_5 = \frac{1}{2} + \widehat{I}_5$$

where

$$\widehat{I}_5 = \frac{1}{2n\sqrt{2\pi}} \sum_{i=1}^n \left\{ e^{-\frac{1}{2}U_i^2} + e^{-\frac{1}{2}(1-U_i)^2} \right\}$$

and U_1, \ldots, U_n are i.i.d. $\mathcal{U}(0, 1)$.

Variance of estimator is

$$V[\hat{\theta}_{5}] = V[\hat{I}_{5}] = \frac{1}{2}V[\hat{I}]$$
$$+\frac{1}{2n}\operatorname{Cov}\left(\frac{e^{-\frac{1}{2}U^{2}}}{\sqrt{2\pi}}, \frac{e^{-\frac{1}{2}(1-U)^{2}}}{\sqrt{2\pi}}\right) = \frac{0.0001278}{n}$$

To obtain a precision of 10^{-3} with a 95% confidence we need $n = [(1.96)^2 0.0001278 \cdot 10^6] + 1 = 491$ random variables simulated from a U(0, 1) distribution.

Example 10.6. Antithetic estimator in Example 9.5 can be improved by using control variates. Observe that

$$e^{-\frac{x^2}{2}} + e^{-\frac{(1-x)^2}{2}} \approx -x^2 + x + \frac{3}{2},$$

in a neighborhood of the origin. Let

•
$$\psi(x) = -x^2 + x$$
 be a control function

•
$$\phi_1(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

•
$$\phi_2(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(1-x)^2}{2}}$$

The Control antithetic estimator is

$$\widehat{\theta}_6 = \frac{1}{2} + \frac{1}{n} \sum_{i=1}^n \left\{ \phi(U_i) - a(\psi(U_i) - \mu) \right\},\$$

where

$$\bullet$$
 U_1, \ldots, U_n are i.i.d. $\mathcal{U}(0, 1)$

$$\bullet \quad \mu = E[\psi(U_i)].$$

We have

$$\mu = E[\psi] = -E[U^2] + E[U] = -\int_0^1 u^2 \, du + \int_0^1 u \, du = \frac{1}{6}$$
$$V[\widehat{\theta}_6] = \frac{V[\phi]}{n} - \frac{Cov(\phi,\psi)^2}{V[\psi]} = \frac{0.0000244}{n},$$

To obtain a precision of 10^{-3} with a 95% confidence we need $n = [(1.96)^2 0.0000244 \cdot 10^6] + 1 = 94$ random variables simulated from a $\mathcal{U}(0,1)$ distribution. MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES - p. 56/5