
On asymptoti
 su�
ien
y andoptimality of quantizations1A. Berlinet2 and I. Vajda3Abstra
tIt is known that quantizations of primary sour
es of information re-du
e the information available for statisti
al inferen
e. We are inter-ested in the quantizations for whi
h the loss of statisti
al information
an be 
ontrolled by the number of 
ells in the observation spa
e usedto quantize observations. If the losses for in
reasing numbers of 
ells
onverge to zero then we speak about asymptoti
ally su�
ient quanti-zations. Optimality is treated on the basis of rate of this 
onvergen
e.The attention is restri
ted to the models with 
ontinuous real valuedobservations and to the interval partitions. We give easily veri�ablene
essary and su�
ient 
onditions for the asymptoti
 su�
ien
y and,for a most 
ommon measure of statisti
al information, we study alsothe rate of 
onvergen
e to the information in the original non-quantizedmodels. Appli
ations of the results in 
on
rete models are illustratedby examples.AMS 1991 subje
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eptsLet us start with the statisti
al model des
ribed by a σ-�nite measure spa
e
(X ,S, µ) and by two probability measures P , Q on (X ,S) dominated by µwith densities

f =
dP

dµ
, g =
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dµ
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where the integral extends over all X and φ(t) is stri
tly 
onvex in the domain
t > 0 with φ(1) = 0. Then, introdu
ing the ∗-
onjugated fun
tion φ∗(t) =
t φ(1/t) in the same domain and setting

(φ(0), φ∗(0)) = lim
t↓0

(φ(t), φ∗(t)) ,we have
0 ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0). (1.2)The left equality holds if and only if P = Q. The right equality holds if andonly if P ⊥ Q unless φ(0) + φ∗(0) = ∞. For φ∗(0) = ∞ or φ(0) = ∞ theright equality holds if P 6≪ Q or Q 6≪ P respe
tively but these 
onditions arenot ne
essary. For details about the de�nition (1.1) and for the basi
 prop-erties of φ-divergen
es used in this paper, we refer to Liese and Vajda (1987).By Theorems 1 and 2 in Österrei
her and Vajda (1993), there is one-to-one relation between the φ-divergen
es (1.1) and the measures of statisti
alinformation introdu
ed by De Groot (1970). Namely, for every φ �guringin (1.1) there exists an experiment with the sample family {P,Q} su
h that

Dφ(P,Q) is the statisti
al information in the experiment and, 
onversely, forevery experiment with the sample family {P,Q} there exists φ of the typeassumed in (1.1) su
h that the statisti
al information in the experiment is
Dφ(P,Q). This motivates our use of the φ-divergen
es as measures of statis-ti
al information.Resear
h on quantizations is motivated by the fa
t that 
omputers pro-
ess information through dis
rete methods requiring quantizations of primarysour
es of the above mentioned statisti
al information Dφ(P,Q). Quantiza-tions in the spa
e (X ,S) 
an be represented as �nite or in�nite S-measurablepartitions

Pk = {Akj : 1 ≤ j ≤ k} (1.3.A)or
Pk = {Akj : j = 1, 2 . . .} (1.3.B)of X . The quantization states are the events Akj = Ak,j or their respe
tiveindi
es (kj) = (k, j). These states are supporting the dis
rete distributions

pk = (pkj) and qk = (qkj)

with (1.4)

pkj = P (Akj) and qkj = Q(Akj).2



The φ-divergen
es Dφ(Pk, Qk) for restri
tions Pk, Qk of P,Q to the al-gebras Sk ⊂ S generated by Pk are denoted in this paper by Dφ(P,Q|Pk),i.e.
Dφ(P,Q|Pk) = Dφ(pk,qk) =

∑

j

qkjφ

(
pkj

qkj

)
. (1.5)It is known that

Dφ(P,Q|Pk) ≤ Dφ(P,Q) (1.6)and that this inequality is stri
t if 0 < Dφ(P,Q) < ∞ (i.e. if P 6= Q and
φ(0) + φ∗(0) <∞), unless the likelihood ratio f(x)/g(x) is 
onstant on ea
h
Akj ∈ Pk. If this is the 
ase then in our statisti
al model one needs notdistinguish between di�erent observations x ∈ Akj, i.e. the events Akj ∈ Pk
an be repla
ed without loss of information by singletons. More rigorously,then the sub-σ-algebra of S generated by Pk is su�
ient for the pair P,Q.This means that the model is in fa
t dis
rete and no quantization is needed.The di�eren
e

Dφ(P,Q) −Dφ(P,Q|Pk)represents a loss of dis
ernibility of distributions P and Q based on statisti
alobservations. It is a loss of statisti
al information due to the quantization.We are interested in the quantizations for whi
h this loss 
an be held under
ontrol by the partition parameter k. Therefore one 
omponent of our modelis a sequen
e of partitions {Pk} = {Pk : k = 1, 2, . . .}, and the problem is to�nd 
onditions on {Pk} under whi
h
lim
k→∞

Dφ(P,Q|Pk) = Dφ(P,Q) (1.7)for all φ-divergen
es under 
onsideration.Csiszár (1973) proved that if the sequen
e {Sk} of sub-σ-algebras of Sgenerated by the sequen
e {Pk} satis�es for every A ∈ S the 
ondition
lim
k→∞

inf
B∈Sk

[P (A∆B) +Q(A∆B)] = 0 (1.8)where A∆B is the symmetri
 di�eren
e (A \B) ∪ (B \ A), then (1.7) holds.Vajda (2002) studied the model with the Eu
lidean spa
e X = R
d, the σ-�eld

S of Borel sets in R
d, Lebesgue measure µ and the re
tangle partitions {Pk}.He proved that if for every x ∈ R

d

lim
k→∞

Q(Bk(x)) = 0 (1.9)where Bk(x) = Akj ∈ Pk if x ∈ Akj for 1 ≤ j ≤ k, then (1.7) holds for all
P and φ su
h that Dφ(P,Q) < ∞. The 
ondition (1.9) is simpler and more3



easily veri�able than (1.8).The 
onvergen
e in (1.7) is a basi
 desirable asymptoti
 property of se-quen
es of quantizations {Pk} in the statisti
al problems involving measures
P and Q. We 
all this property an asymptoti
 su�
ien
y of quantizations.In typi
al appli
ations this optimality is required for all pairs {P,Q} from afamily of probability measures dominated by µ. The asymptoti
ally su�
ientsequen
es {Pk} maximizing the rate of 
onvergen
e in (1.7) are asymptoti-
ally optimal in the obvious sense.Note that the states of measurable quantizations P = {A1, ..., Ak} ofrandom observations X from Eu
lidean probability spa
es (Rd,Bd, µ) areoften the 
onditional expe
tations

Eµ(X|A1), ..., Eµ(X|Ak)taking on values in the sets A1, ..., Ak provided these are 
onvex. Thereis an extensive literature dealing with quantizations Pk = {Ak1, ..., Akk} ofrandom observations X ∼(Rd,Bd, µ) whi
h are non-asymptoti
ally optimalin the sense that for a �xed k they minimize over all P = {A1, ..., Ak} theaverage quantization errors
eµ(P) =

∑

A∈P

∫

A

‖ x−Eµ(X|A) ‖2 dµ(x),(see the re
ent monograph of Graf and Lus
hgy (2000) and referen
es therein).We show below that the the asymptoti
 optimality studied in this paper isfully 
onsistent with this non-asymptoti
 optimality.In the present paper we study the simple variant of the model with ab-solutely 
ontinuous observations from X where X = (x−, x+) is an openinterval in R with −∞ ≤ x− < x+ ≤ ∞, S is the σ-�eld of Borel subsets of
X and µ is the Lebesgue measure. By {Pk} we denote a sequen
e of intervalpartitions of X and by P , Q two di�erent measures with densities

f ≥ 0, g > 0and distribution fun
tions
F (x) =

∫ x

x
−

f(t)dµ(t), G(x) =

∫ x

x
−

g(t)dµ(t), x ∈ X (1.10)respe
tively. Sin
e g > 0 on X , the integrals in (1.1) and the sums in (1.5)are well de�ned. For this model we prove in Se
tion 2 that (1.9) is equivalent4



to
lim
k→∞

sup
j
Q(Akj) = 0 (1.11)and that (1.9) or (1.11) is su�
ient for (1.7) even if Dφ(P,Q) = ∞. We provealso that any of these 
onditions is ne
essary for (1.7) when Dφ(P,Q) < ∞,e.g. when φ(0) + φ∗(0) <∞.However, the main results of the paper are in Se
tion 3 where we studythe rate of 
onvergen
e in (1.7). In this respe
t we restri
t ourselves tothe χ2-divergen
es de�ned by (1.1) for φ(t) = (t − 1)2 or, equivalently, for

φ(t) = t2 − 1, i.e. to
χ2(P,Q) =

∫
(f − g)2

g
dµ =

∫
f 2

g
dµ− 1, (1.12)and to the �nite partitions (1.3.A) so that, by (1.5),

χ2(P,Q|Pk) =

k∑

j=1

(pkj − qkj)
2

qkj
=

k∑

j=1

p2
kj

qkj
− 1. (1.13)The simpli
ity of the quadrati
 fun
tion φ(t) = t2 − 1 makes the analysis ofthe rate of the 
onvergen
e

lim
k→∞

χ2(P,Q|Pk) = χ2(P,Q) (1.14)easier than the analysis of the rate in (1.7) for a general fun
tion φ. The
χ2-divergen
es are thus 
onvenient for a deeper insight into the problem ofasymptoti
 optimality of quantizations Pk.The asymptoti
 optimality studied in the present paper is intimately 
on-ne
ted with the non-asymptoti
 optimality mentioned above. For P and Qunder 
onsideration denote by L = f/g the likelihood ratio, by µ = QL−1the 
orresponding probability measure indu
ed by L on (R,B), and 
onsiderthe random variable X ∼(R,B, µ). As noti
ed by Bo
k (1992) (see also Po-etzelberger and Strasser (2001)), if Eµ(X

2) <∞ then the above introdu
ederror eµ(P) is minimized by Pk = {Ak1, ..., Akk} if and only if the divergen
e
χ2(P,Q|P) is maximized by P̃k = {L−1(Ak1), ...,L−1(Ak1)}. Thus the non-asymptoti
 optimality of quantizations Pk implies the asymptoti
 optimalityof the 
orresponding sequen
e {P̃k = L−1Pk}. On the other hand, χ2(P,Q|P)is the larger, the 
loser it is to χ2(P,Q) Therefore if {P̃k = {Ãk1, ..., Ãkk}}is a sequen
e of interval partitions of X =(x−, x+) whi
h is asymptoti
ally5



optimal for {P,Q} and the likelihood ratio L is monotone on X then one 
anexpe
t that Pk = {L(Ãk1), ...,L(Ãkk)} will not be too far from the k-statenon-asymptoti
ally optimal interval quantization of X ∼(R,B, µ).The results about the 
onvergen
e (1.14) and the rate of 
onvergen
ethere have also some other dire
t statisti
al appli
ations. By Mayoral etal. (2003), the Fisher informations I(θ0) and Ik(θ0) in parametrized families
{Pθ : θ ∈ Θ} and their restri
tions {Pk,θ : θ ∈ Θ} due to the quantizations
Pk 
hara
terize the powers of Pk-based Pearson-type tests of the hypothesis
θ = θ0 against lo
al alternatives. Kallenberg et al. (1985) used the fa
tthat I(0) = χ2(P,Q) and Ik(0) = χ2(P,Q|Pk) are the Fisher informations at
θ0 = 0 in the families

{Pθ = (1 − θ)Q+ θP : 0 ≤ θ ≤ 1}

and (1.15)

{Pk,θ = (1 − θ)Qk + θPk : 0 ≤ θ ≤ 1}.We show that the partitions (1.3.A) satisfying natural assumptions ful�l the
onvergen
e (1.14) and that, under some restri
tions on P,Q, the rate of this
onvergen
e is quadrati
 in 1/k. For the G-uniform partitions we evaluatethe 
onstant at the asymptoti
 term (1/k)2 and demonstrate by an examplethat this 
onstant is not maximized by the standard uniform partitions. Inother words, the standard uniform quantizations widely used in the modernele
troni
 devi
es are not always asymptoti
ally optimal in the sense of 
on-vergen
e in (1.14).Note that the rate of 
onvergen
e of information fun
tionals and its statis-ti
al 
onsequen
es were studied in a number of previous papers. In additionto those already mentioned above, see e.g. Ghurye and Johnson (1981), Zo-grafos et al. (1986), Menéndez et al (2001) and further referen
es therein. Akey fa
t in the 
ontext of the present paper is that Kallenberg et al. (1985)have shown that the rate of 
onvergen
e in (1.14) is also important when
χ2(P,Q) = ∞. In this 
ase the slower rate than √

k in (1.14) means that any
Pk-based Pearson test of the hypothesis Q is asymptoti
ally for the samplesize n→ ∞more powerful against the lo
al alternatives (1−1/

√
n)Q+P/

√
nthan any Pkn

-based test with kn → ∞ for n → ∞. If the rate is faster than√
k then the tests with in
reasing numbers of partition sets are asymptoti-
ally more powerful than the test with any partition Pk of a �xed size k.Our results about the rate of 
onvergen
e in (1.14) for χ2(P,Q) < ∞are new. For χ2(P,Q) = ∞ they extend the results of Kallenberg et al.6



(1985) by employing similar arguments as theirs. Our 
onvergen
e 
onditionsare formulated in terms of the moment fun
tion of the likelihood ratio f/g(moment generating fun
tion of the log-likelihood ratio)
Ma(P,Q) =

∫ (
f

g

)a

g dµ =

∫
exp

{
a ln

f

g

}
dµ (1.16)and its Pk-redu
ed version

Ma(P,Q|Pk) =
k∑

j=1

(
pkj

qkj

)a

qkj =
k∑

j=1

exp

{
a ln

pkj

qkj

}
qkj. (1.17)The 
onvergen
e 
onditions of Kallenberg et al. (1985) were formulated interms of the χa−divergen
e

χa(P,Q) =

∫ ∣∣∣∣
f − g

g

∣∣∣∣
a

g dµand its Pk−redu
ed version
χa(P,Q|Pk) =

k∑

j=1

∣∣∣∣
pkj − qkj

qkj

∣∣∣∣
a

qkj.The moment generating fun
tion is more familiar to the statisti
ians thanthe χa−divergen
e. It is also smoother and therefore simpler for analysis.Moreover, if f, g or pk = (pkj) ,qk = (qkj) are from an exponential statisti
alfamily then Ma(P,Q) or Ma(P,Q|Pk) 
an be expli
itly evaluated for all real
a while for χa(P,Q) or χa(P,Q|Pk) this is true only when a is a positive eveninteger.Noti
e that if a 6= 0 and a 6= 1 then
Ia(P,Q) =

Ma(P,Q) − 1

a(a− 1)
and Ia(P,Q|Pk) =

Ma(P,Q|Pk) − 1

a(a− 1)
(1.18)are the power divergen
es of orders a de�ned by (1.1) and (1.5) for φ(t) =

(ta − 1)/(a(a− 1)). Hen
e in a

ordan
e with (1.6)
Ma(P,Q|Pk) ≤Ma(P,Q) for a ≥ 1 (1.19)and the inequality is stri
t when a > 1,Ma(P,Q) <∞ and f/g is not pie
e-wise 
onstant in X . 7



Let us note that the results of the paper obtained for sequen
es of �niteinterval partitions Pk = {Ak1, . . . , Akk}, k = 1, 2, . . . remain valid for thesubsequen
es Pkn
, n = 1, 2, . . . Therefore they 
an be dire
tly extended toarbitrary sequen
es of interval partitions P̃n = {Ãn1, . . . , Ãn,kn

}, n = 1, 2, . . .for limn−→∞ kn = ∞ by repla
ing k in the results with kn and k −→ ∞ with
n −→ ∞, and by taking Pkn

= P̃n for all n.2 Convergen
eIn this se
tion we study the model 
onsidered in the se
ond half of Se
tion1, with X = (x−, x+) ⊂ R and the Lebesgue measure µ on the Borel subsetsof X . We 
onsider a sequen
e {Pk} of quantizations (interval partitions) of
X and measures P,Q with Lebesgue densities f, g where g > 0 on X , andwith distribution fun
tions F,G on X . To avoid trivial situations where theequality in (1.6) 
an take pla
e, we suppose that the likelihood ratio f/g isnot pie
ewise 
onstant on any open interval in X. This in parti
ular implies
P 6= Q, i. e. the trivial 
ase P = Q is ex
luded. The partitions Pk may beeither �nite of the type (1.3.A) or in�nite of the type (1.3.B).De�nition 1 If

lim
k→∞

Dφ(P,Q|Pk) = Dφ(P,Q) (2.1)for all φ under 
onsideration then the sequen
e {Pk} of quantizations is saidto be asymptoti
ally su�
ient for {P,Q}.Noti
e that the 
onvergen
e (2.1) is required irrespe
tively of whether
Dφ(P,Q) < ∞ or Dφ(P,Q) = ∞. In the following theorem dealing withne
essary 
onditions and su�
ient 
onditions for (2.1) and for the asymptoti
su�
ien
y of sequen
es {Pk} , it is useful to take into a

ount that there exist
φ-divergen
es withDφ(P,Q) <∞ for all P,Q. By (1.2), for this the 
ondition
φ(0) + φ∗(0) < ∞ su�
es. An example is the Hellinger divergen
e de�nedby φ(t) = (1 −

√
t)2 for whi
h

0 ≤ H(P,Q) =

∫
(
√
f −√

g)2dµ ≤ 2,or the power divergen
es (1.18) of the orders 0 < a < 1, for whi
h
0 ≤ Ia(P,Q) ≤ 1

a(1 − a)
.

8



Theorem 1 If {Pk} satis�es the 
ondition
lim
k→∞

sup
j
Q(Akj) = 0 (2.2)then it is asymptoti
ally su�
ient for {P,Q}. If (2.2) does not hold then

lim inf
k→∞

Dφ(P,Q|Pk) < Dφ(P,Q) (2.3)for all φ under 
onsideration with Dφ(P,Q) <∞. Therefore (2.2) and (1.9)are equivalent 
onditions and ea
h of them is ne
essary and su�
ient for theasymptoti
 su�
ien
y of {Pk} for {P,Q}.Proof. Sin
e (2.2) implies (1.9), it implies (2.1) for all 
onvex φ : (0,∞) 7→ Rwith φ(0) + φ∗(0) < ∞, or with φ(0) + φ∗(0) = ∞ and Dφ(P,Q) < ∞,a

ording to Theorem 2 in Vajda (2002). If Dφ(P,Q) = ∞ then φ(0) +
φ∗(0) = ∞ and we 
an use the 
onvex fun
tions φi : (0,∞) 7→ R de�ned forall integers i ≥ 2 by

φi(t) =





φ(i) + φ′
+(i)(t− i) for t ≥ i

φ(t) for (1/i) < t < i
φ(1/i) + φ′

+(1/i)(t− (1/i)) for 0 ≤ t ≤ (1/i)where φ′
+ stands for the right-hand derivative. Obviously,

φi(0) + φ∗
i (0) = φ(1/i) − φ′

+(1/i)/i+ φ′
+(i) <∞and the fun
tions φi are ordered in the sense φ2 ≤ φ3 ≤ . . . ≤ φ, tendingpointwise to φ for i tending to in�nity. Hen
e for every i and k

Dφ(P,Q|Pk) ≥ Dφi
(P,Q|Pk)and (2.2) implies that

lim
k→∞

Dφi
(P,Q|Pk) = Dφi

(P,Q)where
lim
i→∞

Dφi
(P,Q) = Dφ(P,Q) = ∞by the monotone 
onvergen
e theorem. This implies the desired relation

lim
k→∞

Dφ(P,Q|Pk) = ∞.The proof of ne
essity of (2.2) for (2.1) when Dφ(P,Q) < ∞ is based onLemma A.1. in the Appendix. By this lemma, there exists an interval9



A ⊂ X su
h that for some partition intervals Akjk
∈ Pk and a subsequen
e

{kn} of {k}
A ⊂ An : =(Akjk

)k=knfor all n = 1, 2, . . . Let SA be the sub-σ-algebra of the Borel σ-algebra S
onsisting of the sets C and C ∪A for all Borel subsets C ⊆ X \A. Further,denote by PA, QA the restri
tions of P,Q to SA. Sin
e A is 
ontained in
An ∈ Pkn

and disjoint with the remaining intervals of Pkn
it holds Pkn

⊂ SAand 
onsequently
S(Pkn

) ⊂ SA ⊂ S for all n = 1, 2, ...By the monotoni
ity of φ-divergen
es (see Corollary 1.29 in Liese and Vajda(1987)), this implies
Dφ(P,Q|Pkn

) ≤ Dφ(PA, QA) < Dφ(P,Q) for all n = 1, 2, . . . ,where the last inequality is stri
t be
ause φ is stri
tly 
onvex, Dφ(P,Q) <∞and the likelihood ratio f/g is not a. s. 
onstant on A and thus is not SA-measurable. From here (2.3) follows immediately. �Example 1. To see that the 
ondition (2.2) is not ne
essary for (2.1) when
Dφ(P,Q) = ∞, 
onsider the 
ase where

∫

A

g φ

(
f

g

)
dµ = ∞ (2.7)and X \A is an open interval. Take e. g. the φ-divergen
e χ2(P,Q) de�nedby φ(t) = t2−1, the doubly exponential P with f(x) = exp{−|x|} on X = Rand the standard normal Q. Then (2.7) holds for every interval A = (x,∞),

x ∈ R. Under (2.7) we obtain (2.1) for every sequen
e of partitions
Pk = {X \ A,Ak1, . . . , Akk} (2.8)provided P∗

k = {Ak1, . . . , Akk} is an interval partition of A with the property
Q(Akj) = Q(A)/k. Sin
e Q(X \ A) > 0, the sequen
e (2.8) does not satisfy(2.2).Example 2. To see that (2.2) is not ne
essary for (2.1) with Dφ(P,Q) <∞when φ is not stri
tly 
onvex, 
onsider arbitrary φ stri
tly 
onvex in thedomain t ∈ (0, 2) and linear, equal to at+ b for t ≥ 2. Further 
onsider P,Qwith the likelihood ratio f(x)/g(x) ex
eeding 2 on an open interval X \A (as10



an example, we 
an take again the above proposed doubly exponential f(x)and the standard normal g(x)). Then
Dφ(P,Q) =

∫

A

g φ

(
f

g

)
dµ+ a P (X \ A) + b Q(X \ A)so that (2.1) holds for the partitions (2.8). Similarly as above, Q(X \A) > 0implies that these partitions do not satisfy (2.2).3 Rate of 
onvergen
eThis se
tion is a 
ontinuation of Se
tion 2. We study the rate of 
onvergen
eof the χ2-divergen
es χ2(P,Q|Pk) to χ2(P,Q) in the 
ases where χ2(P,Q) is�nite as well as in�nite.We restri
t ourselves to the �nite sequen
es of partitions

Pk = {Ak1, . . . , Akk}su
h that, for su�
iently large Γ > 0,

k min
1≤j≤k

Q(Akj) ≥ 1/Γ for all k (3.1)and/or
k max

1≤j≤k
Q(Akj) ≤ Γ for all k. (3.2)Spe
ial attention is paid to the partitions intoQ-equiprobable intervals where

Q(Akj) =
1

k
for all 1 ≤ j ≤ k and all k, (3.3)so that (3.1) and (3.2) hold for Γ = 1.Let G(x) = Q((−∞, x) ∩ X ) be the distribution fun
tion of Q whi
h isby assumption stri
tly in
reasing on X . It transforms the open interval Xonto Y = (0, 1), the distribution Q into the Lebesgue measure on (0, 1) andthe φ-divergen
es (1.1) into formally simpler integrals on (0, 1), namely

Dφ(P,Q) =

∫ 1

0

φ(p(y)) dy (3.4)where
p(y) =

f(G−1(y))

g(G−1(y))
, y ∈ (0, 1) (3.5)11



and G−1 is the quantile fun
tion from [0, 1] to the 
losure [x−, x+] of X (thegeneralized inverse of the fun
tion G). The fun
tion G also de�nes a oneto one relation between the partitions Pk under 
onsideration and intervalpartitions of (0, 1). If {xkj : 0 ≤ j ≤ k} are the 
utpoints of X leadingto Pk (with xk0 and xkk being the possibly in�nite endpoints of X ) and
yk0 = 0 < yk1 < . . . < ykk = 1 are similar 
utpoints of (0, 1) leading to aninterval partition of (0,1) then this relation is represented by the formulas

G(xkj) = ykj or xkj = G−1(ykj), 0 ≤ j ≤ k. (3.6)Partitions related by (3.6) satisfy the relation
Q(Akj) = ykj − yk,j−1, 1 ≤ j ≤ k (3.7)or, more generally, the probabilities de�ned in (1.4) satisfy the relations

pkj =

∫ ykj

yk,j−1

p(y) dy and qkj =

∫ ykj

yk,j−1

dy (3.8)where p(y) is given by (3.5). It follows from here for example that the
utpoints xkj of partitions Pk satisfying (3.3) are uniquely de�ned by
xkj = G−1(ykj) for ykj =

j

k
, 0 ≤ j ≤ k, (3.9)and

1

Γk
≤ ykj − yk,j−1 ≤

Γ

k
, 1 ≤ j ≤ k, (3.10)for the 
utpoints ykj obtained by (3.6) from the partition Pk satisfying (3.1)and (3.2).By (3.4) and (3.8), the χ2-divergen
es under 
onsideration 
an be ex-pressed as follows

χ2(P,Q) =

∫ 1

0

p2(y) dy − 1,

(3.11)

χ2(P,Q|Pk) =

k∑

j=1

1

ykj − yk,j−1

(∫ ykj

yk,j−1

p(y) dy

)2

− 1.Example 3. Let us 
onsider the situation where X = Y = (0, 1) and theprobability measures P and Q are de�ned by the distribution fun
tions
F (x) = (G(x))2 and G(x) =





4x/3 for 0 < x ≤ 1/2

2x/3 + 1/3 for 1/2 < x < 1.12



By (3.5) and (3.11),
p(y) = 2y and χ2(P,Q) = 4

∫ 1

0

y2 dy − 1 =
1

3
.Let Pk be the uniform partition of X = (0, 1) de�ned by the 
utpoints xkj =

j/k for 0 ≤ j ≤ k and P∗
k be the Q-uniform partition by the 
utpoints x∗kj =

G−1(xkj) for 0 ≤ j ≤ k. We shall 
ompare χa(P,Q|Pk) and χa(P,Q|P∗
k).Assuming for simpli
ity that k is even we see that

ykj =





4j/(3k) for 0 ≤ j ≤ k/2

2j/(3k) + 1/3 for k/2 < x ≤ kand y∗kj = G(x∗kj) = xkj are the 
utpoints de�ned by (3.6). Hen
e by (3.8)and (3.11),
χ2(P,Q|Pk) =

k∑

j=1

[
F̃ (ykj) − F̃ (yk,j−1)

]2

ykj − yk,j−1
− 1and

χ2(P,Q|P∗
k) =

k∑

j=1

[
F̃ (xkj) − F̃ (xk,j−1)

]2

xkj − xk,j−1

− 1where F̃ (y) = y2 is primitive to p(y). Substituting the values of ykj and xkjspe
i�ed above we get
χ2(P,Q|Pk) =

k/2∑

j=1

[(4j/(3k))2 − (4(j − 1)/(3k))2]
2

4/(3k)
+

k∑

j=k/2+1

[(2j/(3k) + 1/3)2 − (2(j − 1)/(3k) + 1/3)2]
2

2/(3k)
− 1and

χ2(P,Q|P∗
k) =

k∑

j=1

[(j/k)2 − ((j − 1)/k)2]
2

1/k
− 1.Applying the substitution j = k/2 + i to k/2 < j ≤ k in the formula for

χ2(P,Q|Pk) and using repeatedly the formula
k/2∑

j=1

j2 =
k(k + 1)(k + 2)

24
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we obtain for every k under 
onsideration
χ2(P,Q|Pk) =

1

3

(
1 − 4

k2

)and
χ2(P,Q|P∗

k) =
1

3

(
1 − 1

k2

)Thus χ2(P,Q|Pk) is a four times less a

urate approximation of χ2(P,Q) =
1/3 than χ2(P,Q|P∗

k), i. e. the Q-uniform quantization P∗
k is for all k sig-ni�
antly better than the standard uniform quantization Pk.In the last example the redu
ed χ2-divergen
es were of the form χ2(P,Q)−

ρ/k2 where ρ = 4/3 or ρ = 1/3 depending on whether the redu
tion wasdue to the quantization Pk or P∗
k respe
tively. The next theorem showsthat if χ2(P,Q) < ∞ then for the Q-uniform partitions Pk the di�eren
e

χ2(P,Q) − χ2(P,Q|Pk) tends to zero typi
ally with the rate at least 1/k2for k tending to in�nity. For regular P,Q it shows that this rate is exa
tly
1/k2 and we expli
itly evaluate the 
oe�
ient ρ = ρ(P,Q) at 1/k2 in theasymptoti
 expansion of the di�eren
e. Note that in this theorem and in thesequel, the asymptoti
 formulas are 
onsidered for k → ∞ unless otherwiseexpli
itly stated.Theorem 2 Let p(y) de�ned by (3.5) be twi
e 
ontinuously di�erentiable on(0,1) with �rst and se
ond derivatives ṗ(y) and p̈(y), and let p̈(y) be boundedon (0,1). Then χ2(P,Q) is �nite and

χ2(P,Q|Pk) = χ2(P,Q) − O

(
1

k2

)
(3.12)for all sequen
es {Pk} satisfying (3.1) and (3.2). If {Pk} satis�es (3.3) then

χ2(P,Q|Pk) = χ2(P,Q) − ρ(P,Q)

k2
+ o

(
1

k2

)
(3.13)where

ρ(P,Q) =
1

12

∫ 1

0

[ṗ2(y) + p(y)p̈(y)] dy > 0. (3.14)Proof. Let us start with a detailed proof of the se
ond assertion whi
h ismore 
ompli
ated. Suppose that {Pk} satis�es (3.3) so that
ykj − yk,j−1 =

1

k
. (3.15)14



If ykj = (yk,j−1 + ykj)/2 then for y ∈ (yk,j−1, ykj)

p(y) = p(ykj) + ṗ(ykj)(y − ykj) +
p̈(ykj)

2
(y − ykj)

2 +Rkj(y),where Rkj(y) is the remainder in the Taylor series expansion. Sin
e y varies inan interval of length 1/k, the assumptions imply Rkj(y) = o (1/k2) uniformlyfor all y ∈ (yk,j−1, ykj) and 1 ≤ j ≤ k. Therefore
p2(y) = p2(ykj) + 2ṗ(ykj)p(ykj)(y − ykj) + ρ(ykj)(y − ykj)

2 + o
(
1/k2

)where ρ(y) denotes the integrand of (3.14). Further,
∫ ykj

yk,j−1

p(y) dy =
p(ykj)

k
+ o

(
1/k2

)and ∫ ykj

yk,j−1

p2(y) dy =
p2(ykj)

k
+
ρ(ykj)

12k3
+ o

(
1

k3

)
.Consequently

∫ 1

0

p2(y) dy =
1

k

k∑

j=1

p2(ykj) +
1

12k3

k∑

j=1

ρ(ykj) + o

(
1

k3

)and
k

k∑

j=1

(∫ ykj

yk,j−1

p(y) dy

)2

=
1

k

k∑

j=1

p2(ykj) + o

(
1

k2

)
.Sin
e ρ(y) is Riemann integrable it holds

1

12k

k∑

j=1

ρ(ykj) =
1

12

∫ 1

0

ρ(y) dy + o (1) = ρ(P,Q) + o (1)and the previous two formulas imply that
k

k∑

j=1

(∫ ykj

yk,j−1

p(y) dy

)2

=

∫ 1

0

p2(y) dy − ρ(P,Q)

k2
+ o

(
1

k2

)
.Now (3.13) follows from (3.11) and (3.15). The �rst assertion 
an be provedby repeating similar steps with the formula (3.15) for ykj − yk,j−1 = Q(Akj)repla
ed with (3.9). � 15



Thus in the regular models of Theorem 2, the divergen
e χ2(P,Q) is �niteand the quantizations into Q-equiprobable or nearly Q-equiprobable stateslead to a quadrati
 rate of 
onvergen
e in (2.1).Example 4. It is easy to see that the model of Example 3 with theQ-uniformquantization P∗
k satis�es all assumptions of Theorem 2. In this model (3.5)yields p(y) = 2y so that (3.14) implies ρ(P,Q) = 1/3. Thus Example 3veri�ed by a dire
t 
al
ulation that in this 
on
rete model (3.13) holds with

o(1/k2) = 0 for all even k > 1. The 
al
ulation indi
ates that (3.13) holdswith o(1/k2) 6= 0 also for odd k > 1. Let us now illustrate the appli
abilityof Theorem 2 in one of the most familiar statisti
al models. Namely, let Pand Q be from the logisti
 family on X = R with distribution fun
tions
Fθ1

(x) =
ex−θ1

1 + ex−θ1

and Fθ2
(x) =

ex−θ2

1 + ex−θ2

, θ1 6= θ2and densities
f(x) =

ex−θ1

[1 + ex−θ1 ]2
and g(x) =

ex−θ2

[1 + ex−θ2 ]2respe
tively. Here
G−1(y) = θ2 + ln

y

1 − y
for y ∈ (0, 1)so that

g(G−1(y)) = y(1 − y)and
f(G−1(y)) =

τy(1 − y)

[1 + y(τ − 1)]2
for τ = eθ2−θ1 > 0, τ 6= 1. (3.16)Therefore the fun
tion (3.5) takes on the form

p(y) =
τ

[1 + y(τ − 1)]2for τ given in (3.16), and its derivatives are
ṗ(y) =

−2τ(τ − 1)

[1 + y(τ − 1)]3
and p̈(y) =

6τ(τ − 1)2

[1 + y(τ − 1)]4
.We see that the assumptions of Theorem 2 are satis�ed and that

p2(y) =
τ 2

[1 + y(τ − 1)]416



and
ṗ2(y) + p(y)p̈(y) =

10τ 2(τ − 1)2

[1 + y(τ − 1)]6
.Hen
e the χ2-divergen
e of (3.11) is

χ2(P,Q) =
(τ − 1)(τ 2 + 2τ + 3)

3for τ given in (3.16). By Theorem 2, the redu
ed value χ2(P,Q|Pk) of thisdivergen
e after the quantization of X by the 
utpoints
xkj = G−1(j/k) = θ2 + ln

j

k − j
, 1 ≤ j ≤ k − 1satis�es the asymptoti
 relation (3.13) with

ρ(P,Q) =
2(τ − 1)2(τ 4 + τ 3 + τ 2 + τ + 1)

τ 3for the same τ as above.The next theorem deals with the rate of 
onvergen
e in (2.1) in the 
asewhere χ2(P,Q) is in�nite. We use the terminology introdu
ed by the threefollowing de�nitions. For illustration of the 
on
epts de�ned there we referto Example 5 below.De�nition 2 A nonnegative sequen
e sk is said to be of the order of at most
kc (in symbols, sk . kc) or at least kc (in symbols, sk & kc) if sk/k

b → 0for all b > c, or sk/k
b → ∞ for all b < c, respe
tively. If sk . kc and also

sk & kc then we say that sk is of the order of kc (in symbols sk ≈ kc).The following de�nition deals with the nonnegative fun
tions p(y) of (3.5)leading to in�nite divergen
e χ2(P,Q). We see from (3.11) that su
h fun
-tions must be unbounded on the de�nition domain (0,1).De�nition 3 We say that the fun
tion p is regularly unbounded if its exten-sion in [0, 1] is bounded ex
ept in neighborhoods of �nitely many points. If itis not bounded in a right (left) neighborhood of y ∈ [0, 1] then it is assumedthat h(t) = p(y + 1/t) (or h(t) = p(y − 1/t)) varies regularly at in�nity, i.e.that for su�
iently large t > 0 and some ρ ∈ R

h(t) = tρλ(t) (3.17)where λ(t) varies slowly at in�nity in the sense that
lim
t→∞

λ(tα)

λ(t)
= 1 for any α > 0.17



In the next de�nition it is useful to take into a

ount that the momentfun
tion Ma(P,Q) de�ned by (1.16) is skew symmetri
 about a = 1/2 in thesense that M1−a(P,Q) = Ma(Q,P ) and 0 ≤Ma(P,Q) ≤ 1 for a ∈ [0, 1].De�nition 4 The values
a+ = a+(P,Q) = sup{a ≥ 1 : Ma(P,Q) <∞}and
a− = a−(P,Q) = inf{a ≤ 0 : Ma(P,Q) <∞}are maximal and minimal e�e
tive arguments of the moment fun
tion. Thevalue

c = c(P,Q) =
2 − a+

a+assumed to be -1 when a+ = ∞ and taking on values from the interval (−1, 1]when a+ <∞, is said to be a 
hara
teristi
 exponent of P and Q.Note that De�nition 3 summarizes properties of p(y) previously 
onsid-ered by Kallenberg et al. (1985). The following theorem extends Propositions4.2 and 4.4 of these authors.Theorem 3 If the 
hara
teristi
 exponent c = c(P,Q) is negative, i.e. ifthe maximal e�e
tive argument a+(P,Q) > 2, then χ2(P,Q) < ∞. If c ispositive, i.e. if a+(P,Q) < 2 then χ2(P,Q) = ∞. In the latter 
ase
χ2(P,Q|Pk) . kc (3.18)provided {Pk} satis�es (3.1) and
χ2(P,Q|Pk) & kc (3.19)provided {Pk} satis�es (3.2) and p(y) is regularly unbounded in the sense ofDe�nition 3. Therefore in the models with positive 
hara
teristi
 exponent c
χ2(P,Q|Pk) ≈ kc (3.20)provided all the mentioned 
onditions hold.Proof. The �rst assertion follows dire
tly from Lemma A.2 in the Appendix.To prove (3.18), put b0 = 1 if c = 1 and b0 ∈ (c, 1) otherwise. ThenMa0

(P,Q)is �nite for a0 = 2/(1+b0) and, by Lemma A.3, the sequen
e k−b0χ2(P,Q|Pk)is bounded. This means that for all b > b0 (and, 
onsequently, for all b > c)
k−bχ2(P,Q|Pk) → 018



i.e. (3.18) holds. Relation (3.19) follows dire
tly from Lemma A.4 and (3.20)is 
lear. �Example 5. A simple appli
ation of Theorem 3 is obtained when P and Qare probability measures on the observation spa
e X = (0, 1) with distribu-tion fun
tions F (x) = Fθ(x) = x1−θ for some 0 < θ < 1 and G(x) = x. Then
f(x) = (1 − θ)x−θ and (3.5) implies that p(y) = (1 − θ)y−θ for Y = (0, 1)whi
h is a regularly unbounded fun
tion on Y in the sense of De�nition 3.By (3.11) and (1.16),

χ2(P,Q) =

{
θ2/(1 − 2θ) if 0 < θ < 1/2
∞ if 1/2 ≤ θ < 1.and

Ma(P,Q) =

{
(1 − θ)a/(1 − aθ) if a < 1/θ
∞ if a ≥ 1/θ.Hen
e the maximal e�e
tive argument is a+ = 1/θ and, by De�nition 4,the 
hara
teristi
 exponent is c = c(P,Q) = 2θ − 1. It is in the interval

(−1, 0) for 0 < θ < 1/2 and in the interval (0, 1) for 1/2 < θ < 1. Let
{Pk} be the sequen
e of uniform partitions of X into k 
ells. Sin
e thesepartitions are also Q-uniform, they satisfy (3.3). We see that all assumptionsof Theorem 3 are satis�ed. Therefore this theorem says that if 0 < θ < 1/2then χ2(P,Q) <∞ and if 1/2 < θ < 1 then χ2(P,Q) = ∞ whi
h agrees withthe dire
t above 
omputations. The 
ase θ = 1/2 is ignored by the theorem,but it also says that if 1/2 < θ < 1 then χ2(P,Q|Pk) ≈ k2θ−1. By De�nition2, this means that k2θ−1 
hara
terizes the rate of 
onvergen
e of χ2(P,Q|Pk)to χ2(P,Q) = ∞ in the sense that, asymptoti
ally for k tending to in�nity,
χ2(P,Q|Pk) = k2θ−1+o(1). This is a new fa
t about the spe
ial model under
onsideration. Its dire
t veri�
ation requires to evaluate

χ2(P,Q|Pk) =
k∑

j=1

[
(j/k)1−θ − ((j − 1)/k)1−θ

]2

1/k(
f. (3.8)-(3.11)) for 1/2 < θ < 1, or at least to prove the asymptoti
 relation
ln

k∑

j=1

[jα − (j − 1)α]2 = o(ln k)for 0 < α < 1/2. These tasks are not so easy.The results of this se
tion are relevant to the theory of optimal quan-tizations P∗
k that maximize the divergen
e χ2(P,Q|Pk) over all k-elements19



interval partitions Pk of the observation spa
e. Sin
e the Q-uniform inter-val partitions Pk satisfy (3.3), and 
onsequently also (3.1) and (3.2), theasymptoti
 representation (3.20) obtainable for these partitions 
an be usedto estimate from below the maximal divergen
e χ2(P,Q|P∗
k). Similarly we
an use the estimate

χ2(P,Q) − χ2(P,Q|P∗
k) ≤ ρ(P,Q)

k2
+ o

(
1

k2

)for ρ(P,Q) given by (3.14) when P,Q are regular in the sense of Theorem2. An analogous idea was re
ently applied by Mayoral et al (2003) to thepartitions P∗
k that maximize the Fisher information in parametri
 models.
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AppendixLemma A.1 Let Q be an absolutely 
ontinuous probability measure on aninterval X ⊆ R. If a sequen
e of intervals Ak ⊂ X satis�es the 
ondition
lim sup

k→∞

Q(Ak) > 0then there exists an open interval B and a subsequen
e {Akn
} of {Ak} su
hthat B is 
ontained in Akn

for all su�
iently large n and Q(B) > 0.Proof. By assumption, there exists a subsequen
e {Akr
: r ∈ 1, 2, . . .} su
hthat

inf
r
Q(Akr

) ≥ 2δ for some δ > 0. (A.1)Let (a1, a2) ⊂ X be su
h that Q((a1, a2)) > 1 − δ. De�ne intervals
Br = Akr

∩ (a1, a2).By (A.1), these intervals are nonvoid with
inf
r
Q(Br) ≥ δ.Sin
e the endpoints b1r and b2r of Br (where b1r ≤ b2r) are in the 
ompa
tset [a1, a2], there exists a subsequen
e {rn} of {r} for whi
h both the limits

b1 = lim
n→∞

b1rn
and b2 = lim

n→∞
b2rnexist in [a1, a2]. By 
ontinuity of measure Q with respe
t to the set-theoreti

onvergen
e of events,

Q((b1, b2)) = lim
n→∞

Q(Brn
) ≥ δ.Therefore b2 > b1 and any nonvoid open subinterval B ⊂ (b1, b2) togetherwith the subsequen
e Akn

where kn is the index kr for whi
h r = rn satisfythe statement of the lemma. �The remaining lemmas are applied in Se
tion 3. Therefore in these lem-mas we 
onsider the same P,Q and Pk as in Se
tion 3.Lemma A.2 The moment generating fun
tion (1.16) satis�es for all 0 <
a1 < a2 and all P,Q the inequality

(Ma1
(P,Q))1/a1 ≤ (Ma2

(P,Q))1/a2 .21



In parti
ular, the divergen
e χ2(P,Q) = M2(P,Q) − 1 is bounded for all
0 < a1 < 2, a2 > 2 and P,Q as follows

(Ma1
(P,Q))2/a1 − 1 ≤ χ2(P,Q) ≤ (Ma2

(P,Q))2/a2 − 1.Proof. The �rst assertion follows from the 
onvexity of ψ(t) = ta2/a1 andthe se
ond assertion is a trivial 
onsequen
e. �Lemma A.3 If Pk satis�es (3.1) then for every 1 ≤ a ≤ 2 and for Γ whi
happears in (3.1)
k(a−2)/aM2(P,Q|Pk) ≤ Γ(2−a)/a(Ma(P,Q))2/a.Consequently for a sequen
e {Pk} satisfying (3.1) and all a ∈ [1, 2]

sup
k≥1

k(a−2)/aχ2(P,Q|Pk) ≤ Γ(2−a)/a(Ma(P,Q))2/a.Proof. Let k ≥ 1. If a is equal to 1 then Ma(P,Q) is also equal to 1. As wehave
M2(P,Q|Pk) =

k∑

j=1

qkj

(
pkj

qkj

)2

≤ max
1≤j≤k

(
pkj

qkj

)

≤ k Γ (by (3.1)),both inequalities easily follow. Now suppose that 1 < a ≤ 2 and put b =
(2 − a)/a. If b = 0 then the assertion is trivial. If b > 0 then

M2(P,Q|Pk) =

k∑

j=1

qkj

(
pkj

qkj

)2

≤ max
1≤j≤k

(
pkj

qkj

)ab k∑

j=1

qkj

(
pkj

qkj

)a

(ab+ a = 2)

≤
(

max
1≤j≤k

pkj

qkj

)ab

Ma(P,Q).where the last inequality follows from the formula for Ma(P,Q|Pk) in (1.17)and from the inequality (1.19). By (3.8) and the Hölder inequality
pkj =

∫ ykj

yk,j−1

p(y) dy ≤ q
1−1/a
kj

(∫ ykj

yk,j−1

p(y)a dy

)1/a22



so that
max
1≤j≤k

pkj

qkj
≤ max

1≤j≤k
q
−1/a
kj

(∫ ykj

yk,j−1

p(y)a dy

)1/a

≤ Γ1/ak1/a

(
max
1≤j≤k

∫ ykj

yk,j−1

p(y)a dy

)1/a

(see (3.1))
≤ Γ1/ak1/a(Ma(P,Q))1/a (see (1.16)).Combining this with the previous inequality, we obtain
k−bM2(P,Q|Pk) ≤ Γb(Ma(P,Q))2/awhi
h 
ompletes the proof. �The proof of the previous lemma uses the arguments of the proof of Propo-sition 4.2 in Kallenberg et al. (1985). The following lemma generalizes Propo-sition 4.4 of the same paper. Noti
e that its statement is trivial for b < 0be
ause the assumption (3.2) implies (2.2) so that χ2(P,Q|Pk) → χ2(P,Q)for all P,Q by Theorem 1. Therefore if b < 0 then our assumption P 6= Qimplies k−bχ2(P,Q|Pk) → ∞ automati
ally for all P,Q under 
onsideration.Lemma A.4. Let P,Q be probability measures with the fun
tion p(y)bounded or regularly unbounded in the sense of De�nition 3 and with a
hara
teristi
 exponent spe
i�ed in De�nition 4. If {Pk} satis�es (3.2) thenfor every b < c

lim
k→∞

k−bχ2(P,Q|Pk) = ∞.Proof. If p(y) is bounded on (0, 1) then c = −1 so that the statement istrivial. It remains to be trivial unless c > 0, i.e. unless the maximal e�e
tiveargument a+ of the moment fun
tion Ma(P,Q) is below 2. Therefore let
a+ < 2 and ∫

U

p(y)a dy = ∞ if a > a+for a neighborhood U ⊂ [0, 1] of at least one point y ∈ [0, 1]. Let for simpli
itythe point be y = 0 and put for brevity yk = yk1 for yk1 de�ned in (3.6). Sin
e(3.2) holds, we see that k−b ≥ (yk/Γ)b. Hen
e, by (3.11), it su�
es to provethat the expression
yb

k

(∫ yk

0
p(y) dy

)2

yk
=

(
y

(b−1)/2
k

∫ yk

0

p(y) dy

)223



tends to in�nity if 0 ≤ b < c. For every 0 ≤ b < c take a su
h that
a+ < a <

2

b+ 1
.Note that su
h a exists sin
e 2/(b + 1) > a+ for all 0 ≤ b < c. By theassumptions,

∫ yk

0

p(y)a dy = ∞ and

∫ yk

0

p(y) dy <∞.If we put tk = 1/yk then, by (3.8), p(1/t) = tρλ(t) for λ(t) slowly varying atin�nity, so that
∫ ∞

tk

taρ−2λ(t)adt = ∞ and

∫ ∞

tk

tρ−2λ(t)dt <∞.Sin
e λa(t) is slowly varying at in�nity too, the �rst assertion of the lemmaon page 280 of Feller (1966) 
an be applied to both these relations. The �rstone implies in this manner that ρ ≥ 1/a and the se
ond one implies ρ ≤ 1.Now there are two possibilities : either ρ = 1 in whi
h 
ase
∫ ∞

tk

t−1λ(t)dt <∞or ρ < 1. In both these 
ases the se
ond assertion of the Feller lemma impliesthat ∫ ∞

t

sρ−2λ(s) ds = tρ−1Λ(t)where
Λ(t) = t1−ρ

∫ ∞

t

sρ−2λ(s) dsis slowly varying at in�nity. By Lemma 2 on p. 277 of Feller, Λ(t) > t−ε forany �xed ε > 0 and all t su�
iently large. Therefore
tβk

∫ ∞

tk

sρ−2λ(s)ds = y−β
k

∫ yk

0

p(y) dy → ∞whenever β > 1 − ρ. By de�nition of a and the inequality ρ ≥ 1/a,
1 − b

2
> 1 − 1

a
≥ 1 − ρso that the desired relation

y
(b−1)/2
k

∫ yk

0

p(y) dy → ∞24
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