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On asymptotic sufficiency and
optimality of quantizations:

A. Berlinet? and I. Vajda?

Abstract

It is known that quantizations of primary sources of information re-
duce the information available for statistical inference. We are inter-
ested in the quantizations for which the loss of statistical information
can be controlled by the number of cells in the observation space used
to quantize observations. If the losses for increasing numbers of cells
converge to zero then we speak about asymptotically sufficient quanti-
zations. Optimality is treated on the basis of rate of this convergence.
The attention is restricted to the models with continuous real valued
observations and to the interval partitions. We give easily verifiable
necessary and sufficient conditions for the asymptotic sufficiency and,
for a most common measure of statistical information, we study also
the rate of convergence to the information in the original non-quantized
models. Applications of the results in concrete models are illustrated
by examples.
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Introduction and basic concepts

Let us start with the statistical model described by a o-finite measure space
(X,S, p) and by two probability measures P, () on (X, S) dominated by u
with densities

P dg

Dissimilarity between P and () is measured by ¢-divergences

DP.Q) = [ g0 (g) du
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where the integral extends over all X and ¢(t) is strictly convex in the domain
t > 0 with ¢(1) = 0. Then, introducing the x-conjugated function ¢*(t) =
t ¢(1/t) in the same domain and setting

(0(0),9°(0)) = lim (4(t), (1)) ,

t10

we have
0 < Dy(P,Q) < ¢(0) +¢7(0). (1.2)

The left equality holds if and only if P = (). The right equality holds if and
only if P L @ unless ¢(0) + ¢*(0) = co. For ¢*(0) = 0o or ¢(0) = oo the
right equality holds if P &« @ or ) &« P respectively but these conditions are
not necessary. For details about the definition (1.1) and for the basic prop-
erties of ¢-divergences used in this paper, we refer to Liese and Vajda (1987).

By Theorems 1 and 2 in Osterreicher and Vajda (1993), there is one-to-
one relation between the ¢-divergences (1.1) and the measures of statistical
information introduced by De Groot (1970). Namely, for every ¢ figuring
in (1.1) there exists an experiment with the sample family {P, @} such that
Dy(P, Q) is the statistical information in the experiment and, conversely, for
every experiment with the sample family {P,Q} there exists ¢ of the type
assumed in (1.1) such that the statistical information in the experiment is
Dy (P, Q). This motivates our use of the ¢-divergences as measures of statis-
tical information.

Research on quantizations is motivated by the fact that computers pro-
cess information through discrete methods requiring quantizations of primary
sources of the above mentioned statistical information Dy(P, Q). Quantiza-
tions in the space (X', S) can be represented as finite or infinite S-measurable
partitions

Pe={Ay:1<j<h (1.3.4)

or

Pe={Ay:j=12..1} (1.3.B)

of X. The quantization states are the events Ay; = Ay ; or their respective
indices (kj) = (k, j). These states are supporting the discrete distributions

Py = (prj) and  dp = (qry)
with (1.4)
prj = P(Ag;) and gy = Q(Ay;)-



The ¢-divergences Dy (P, Qi) for restrictions Py, Q) of P,(Q to the al-
gebras S, C S generated by Py are denoted in this paper by Dy(P, Q|Px),
i.e.

Dy (P, Q[Py) = Dy(Pr, ai) = qujgb (%) : (1.5)

It is known that
Dy (P, Q|Pr) < Dy(P,Q) (1.6)

and that this inequality is strict if 0 < Dy(P,Q) < oo (i.e. if P # @ and
#(0) + ¢*(0) < 00), unless the likelihood ratio f(z)/g(x) is constant on each
Ay; € Pi. If this is the case then in our statistical model one needs not
distinguish between different observations x € Ay, i.e. the events Ay; € Py
can be replaced without loss of information by singletons. More rigorously,
then the sub-c-algebra of S generated by Py is sufficient for the pair P, Q).
This means that the model is in fact discrete and no quantization is needed.
The difference
Dy(P,Q) — Dy(P, Q[Pr)

represents a loss of discernibility of distributions P and () based on statistical
observations. It is a loss of statistical information due to the quantization.
We are interested in the quantizations for which this loss can be held under
control by the partition parameter k. Therefore one component of our model
is a sequence of partitions {Py} = {Px : k= 1,2,...}, and the problem is to
find conditions on {Py} under which

for all ¢-divergences under consideration.

Csiszar (1973) proved that if the sequence {Sy} of sub-o-algebras of S
generated by the sequence {Py} satisfies for every A € S the condition

lim inf [P(AAB) + Q(AAB)] =0 (1.8)

k—oo BES),

where AAB is the symmetric difference (A \ B) U (B \ A), then (1.7) holds.
Vajda (2002) studied the model with the Euclidean space X = R?, the o-field
S of Borel sets in R?, Lebesgue measure z and the rectangle partitions {P}.
He proved that if for every z € R?

lim Q(Bi(x)) = 0 (1.9

where By(x) = Ay; € Py if x € Ay for 1 < j <k, then (1.7) holds for all
P and ¢ such that D4(P, Q) < co. The condition (1.9) is simpler and more
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easily verifiable than (1.8).

The convergence in (1.7) is a basic desirable asymptotic property of se-
quences of quantizations {Px} in the statistical problems involving measures
P and ). We call this property an asymptotic sufficiency of quantizations.
In typical applications this optimality is required for all pairs {P, @} from a
family of probability measures dominated by p. The asymptotically sufficient
sequences {Py} maximizing the rate of convergence in (1.7) are asymptoti-
cally optimal in the obvious sense.

Note that the states of measurable quantizations P = {A;,..., Ax} of
random observations X from Euclidean probability spaces (R? B2 1) are
often the conditional expectations

B (X|AL), ... By (X]Ay)

taking on values in the sets Aj,..., Ay provided these are convex. There
is an extensive literature dealing with quantizations Py = {Ag1, ..., Az} of
random observations X ~(R9, B4, 1) which are non-asymptotically optimal
in the sense that for a fixed k& they minimize over all P = {Ay, ..., A} the
average quantization errors

eu(P) =3 / | 2 — Eu(X|4) |2 duz),
Aep /A

(see the recent monograph of Graf and Luschgy (2000) and references therein).
We show below that the the asymptotic optimality studied in this paper is
fully consistent with this non-asymptotic optimality.

In the present paper we study the simple variant of the model with ab-
solutely continuous observations from X where X = (z_,x,) is an open
interval in R with —oo < z_ < 2, <00, § is the o-field of Borel subsets of
X and p is the Lebesgue measure. By {P,} we denote a sequence of interval
partitions of X and by P, @) two different measures with densities

f=0, g>0

and distribution functions
F(z) = / fOdu(t),  Gla) = / odu(t),  reX  (110)

respectively. Since g > 0 on X, the integrals in (1.1) and the sums in (1.5)
are well defined. For this model we prove in Section 2 that (1.9) is equivalent
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to
lim sup Q(Ag;) = (1.11)

k—o00 j

and that (1.9) or (1.11) is sufficient for (1.7) even if Dy(P, Q) = co. We prove
also that any of these conditions is necessary for (1.7) when Dy(P, Q) < oo,

e.g. when ¢(0) + ¢*(0) < 00

However, the main results of the paper are in Section 3 where we study
the rate of convergence in (1.7). In this respect we restrict ourselves to
the x2-divergences defined by (1.1) for ¢(t) = (t — 1)? or, equivalently, for
o(t) =t* — 1, i.e. to

f—9)? f?
V(P,Q) =/! dp= [ 2 ap-1, (1.12)
9 9
and to the finite partitions (1.3.A) so that, by (1.5),
k k P2
2(PQIPy) =) —L— p‘” @) =Yg (1.13)
j=1 j=1 ki

The simplicity of the quadratic function ¢(¢) = t* — 1 makes the analysis of
the rate of the convergence

Jim x*(P,QIPy) = x*(P, Q) (1.14)

easier than the analysis of the rate in (1.7) for a general function ¢. The
x2-divergences are thus convenient for a deeper insight into the problem of
asymptotic optimality of quantizations Pj,.

The asymptotic optimality studied in the present paper is intimately con-
nected with the non-asymptotic optimality mentioned above. For P and @)
under consideration denote by £ = f/g the likelihood ratio, by u = QL™!
the corresponding probability measure induced by £ on (R, ), and consider
the random variable X ~(R, B, ). As noticed by Bock (1992) (see also Po-
etzelberger and Strasser (2001)), if E,(X?) < co then the above introduced
error e, (P) is minimized by Pj, = {Ax1, ..., Ape} if and only if the divergence

X2(P,Q|P) is maximized by Py = {L (A1), ..., L7 (A1)}. Thus the non-
asymptotlc optimality of quantlzatlons P, implies the asymptotic optimality
of the corresponding sequence {P, = L~'P,}. On the other hand, x?(P, QIP)
is the larger, the closer it is to x2(P,Q) Therefore if {P}, = {Am, o A}
is a sequence of interval partitions of X =(x_,z,) which is asymptotically



optimal for { P, Q} and the likelihood ratio £ is monotone on X then one can
expect that Py, = {L(A), ..., L(Ag)} will not be too far from the k-state
non-asymptotically optimal interval quantization of X ~(R, B, u).

The results about the convergence (1.14) and the rate of convergence
there have also some other direct statistical applications. By Mayoral et
al. (2003), the Fisher informations I(6y) and I;(6y) in parametrized families
{Py : 0 € ©} and their restrictions {Pyp : € ©} due to the quantizations
P characterize the powers of Pi-based Pearson-type tests of the hypothesis
0 = 0y against local alternatives. Kallenberg et al. (1985) used the fact
that 7(0) = x*(P,Q) and I,(0) = x*(P, Q|Py) are the Fisher informations at
0y = 0 in the families

(Pp=(1-0)Q+0P:0<0<1}

and (1.15)
{Pro=(1-0)Qr +0P,:0<0 <1}

We show that the partitions (1.3.A) satisfying natural assumptions fulfil the
convergence (1.14) and that, under some restrictions on P, @, the rate of this
convergence is quadratic in 1/k. For the G-uniform partitions we evaluate
the constant at the asymptotic term (1/k)? and demonstrate by an example
that this constant is not maximized by the standard uniform partitions. In
other words, the standard uniform quantizations widely used in the modern
electronic devices are not always asymptotically optimal in the sense of con-
vergence in (1.14).

Note that the rate of convergence of information functionals and its statis-
tical consequences were studied in a number of previous papers. In addition
to those already mentioned above, see e.g. Ghurye and Johnson (1981), Zo-
grafos et al. (1986), Menéndez et al (2001) and further references therein. A
key fact in the context of the present paper is that Kallenberg et al. (1985)
have shown that the rate of convergence in (1.14) is also important when
Y2(P, Q) = oc. In this case the slower rate than v/k in (1.14) means that any
Pr-based Pearson test of the hypothesis @) is asymptotically for the sample
size n — oo more powerful against the local alternatives (1—1/v/n)Q+P/+v/n
than any Py, -based test with k,, — oo for n — oo. If the rate is faster than
Vk then the tests with increasing numbers of partition sets are asymptoti-
cally more powerful than the test with any partition P, of a fixed size k.

Our results about the rate of convergence in (1.14) for x*(P,Q) < oo
are new. For x?(P,Q) = oo they extend the results of Kallenberg et al.



(1985) by employing similar arguments as theirs. Our convergence conditions
are formulated in terms of the moment function of the likelihood ratio f/g
(moment generating function of the log-likelihood ratio)

Ma<p,@:/(§)“ gin=[ewfanlbar o

and its Pi-reduced version

k a k
AMR@%FQ:G%)%Z GW%M&%%T (1.17)
1

qkj

The convergence conditions of Kallenberg et al. (1985) were formulated in
terms of the y®—divergence

. =gl

;MH®=/+——QW
g
and its P,—reduced version
k D q a
. i — Qi
X“(P, Q|Py) = E ——1 g
= dkj

The moment generating function is more familiar to the statisticians than
the x®—divergence. It is also smoother and therefore simpler for analysis.
Moreover, if f, g or px = (pk;), dr = (qx;) are from an exponential statistical
family then M, (P, Q) or M,(P,Q|Pyx) can be explicitly evaluated for all real
a while for x*(P, Q) or x*(P, Q|P) this is true only when a is a positive even
integer.

Notice that if @ # 0 and a # 1 then

MG<P7 Q) _ 1
ala —1)

ala—1)

]a(Pv Q) = and Ia(Pv Q|Pk) = (118)

are the power divergences of orders a defined by (1.1) and (1.5) for ¢(t) =
(t*—1)/(a(a — 1)). Hence in accordance with (1.6)

M,(P,Q|Px) < My(P,Q) for a>1 (1.19)

and the inequality is strict when a > 1, M, (P, Q) < oo and f/g is not piece-
wise constant in X.



Let us note that the results of the paper obtained for sequences of finite
interval partitions Py, = {A1,..., A}, £ = 1,2,... remain valid for the
subsequences Py, ,n = 1,2,... Therefore they can be directly extended to
arbitrary sequences of interval partitions P, = {[lnl, ceey An,kn}a n=12,...
for lim,,__. k, = oo by replacing k in the results with k, and £ — oo with
n — 00, and by taking Py, = P, for all n.

2 Convergence

In this section we study the model considered in the second half of Section
1, with X = (z_, ;) C R and the Lebesgue measure p on the Borel subsets
of X. We consider a sequence {P;} of quantizations (interval partitions) of
X and measures P, () with Lebesgue densities f,g where g > 0 on X, and
with distribution functions F, G on X. To avoid trivial situations where the
equality in (1.6) can take place, we suppose that the likelihood ratio f/g is
not piecewise constant on any open interval in X. This in particular implies
P # @, i. e. the trivial case P = @ is excluded. The partitions P, may be
either finite of the type (1.3.A) or infinite of the type (1.3.B).

Definition 1 If
lim Dy(P.QIPy) = Dy(P.Q) (2.1)

for all ¢ under consideration then the sequence {Py} of quantizations is said
to be asymptotically sufficient for {P, Q}.

Notice that the convergence (2.1) is required irrespectively of whether
Dy(P, Q) < oo or Dy(P,Q) = oo. In the following theorem dealing with
necessary conditions and sufficient conditions for (2.1) and for the asymptotic
sufficiency of sequences {Py} , it is useful to take into account that there exist
¢-divergences with Dy (P, Q) < oo for all P, Q. By (1.2), for this the condition
#(0) + ¢*(0) < oo suffices. An example is the Hellinger divergence defined
by ¢(t) = (1 — +/t)? for which

0< H(P.Q) = /(ﬁ— Vaydp <2,

or the power divergences (1.18) of the orders 0 < a < 1, for which

1
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Theorem 1 If {Py} satisfies the condition

lim sup Q(Ax;) =0 (2.2)

then it is asymptotically sufficient for {P,Q}. If (2.2) does not hold then
limint D,(P, QIPy) < Dy(P.Q) (2.3)

for all ¢ under consideration with Dy(P, Q) < oco. Therefore (2.2) and (1.9)
are equivalent conditions and each of them is necessary and sufficient for the

asymptotic sufficiency of { Py} for {P,Q}.

Proof. Since (2.2) implies (1.9), it implies (2.1) for all convex ¢ : (0, 00) — R
with ¢(0) + ¢*(0) < oo, or with ¢(0) + ¢*(0) = oo and Dy(P,Q) < oo,
according to Theorem 2 in Vajda (2002). If D4(P,Q) = oo then ¢(0) +
¢»*(0) = oo and we can use the convex functions ¢; : (0,00) — R defined for
all integers ¢« > 2 by

o(i) + ¢ (i)t — 7) for t>i
¢i(t) =S o(t) for (1/1) <t <i
¢(1/1) + ¢, (1/i)(t = (1/4)) for 0 <t <(1/i)

where ¢/, stands for the right-hand derivative. Obviously,

¢i(0) + ¢7(0) = o(1/d) — ¢!, (1/i) /i + ¢/ (i) < o0

and the functions ¢; are ordered in the sense ¢y < ¢3 < ... < ¢, tending
pointwise to ¢ for i tending to infinity. Hence for every i and k

Dy(P,Q|Pr) = Dy, (P, Q|Px)
and (2.2) implies that
Jim Dy, (P, QPx) = Dy, (P, Q)
where
lim Dy, (P.Q) = Dy(P,Q) = oo
by the monotone convergence theorem. This implies the desired relation

The proof of necessity of (2.2) for (2.1) when D,(P,Q) < oo is based on
Lemma A.1. in the Appendix. By this lemma, there exists an interval
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A C X such that for some partition intervals Ay;, € Pi and a subsequence
{kn} of {k}
AC A, =(Akj ) b=k,

for all n = 1,2,... Let S4 be the sub-o-algebra of the Borel o-algebra &
consisting of the sets C' and C'U A for all Borel subsets C' C X'\ A. Further,
denote by P4, Q4 the restrictions of P, to Ss. Since A is contained in
A, € Py, and disjoint with the remaining intervals of Py, it holds P, C Sy
and consequently

S(Pkn) cSpCcS foralln=1,2,..

By the monotonicity of ¢-divergences (see Corollary 1.29 in Liese and Vajda
(1987)), this implies

Dy(P,Q|Pr,) < Dy(Pa,Qa) < Dy(P,Q) foralln=1,2,...,

where the last inequality is strict because ¢ is strictly convex, Dy(P, Q) < oo
and the likelihood ratio f/g is not a. s. constant on A and thus is not Sa-
measurable. From here (2.3) follows immediately. O

Example 1. To see that the condition (2.2) is not necessary for (2.1) when
Dy(P,Q) = oo, consider the case where

/Ag ¢ (g) dp = oo (2.7)

and X \ A is an open interval. Take e. g. the ¢-divergence x?(P, Q) defined
by ¢(t) = t* —1, the doubly exponential P with f(z) = exp{—|z|} on X =R
and the standard normal ). Then (2.7) holds for every interval A = (z, 00),
x € R. Under (2.7) we obtain (2.1) for every sequence of partitions

Pr={X\A Ap, .. Apr} (2.8)

provided P} = { A1, ..., Axr} is an interval partition of A with the property
Q(Ak;) = Q(A)/k. Since Q(X \ A) > 0, the sequence (2.8) does not satisfy
(2.2).

Example 2. To see that (2.2) is not necessary for (2.1) with Dy(P, Q) < oo
when ¢ is not strictly convex, consider arbitrary ¢ strictly convex in the
domain ¢t € (0,2) and linear, equal to at + b for ¢ > 2. Further consider P, Q
with the likelihood ratio f(z)/g(x) exceeding 2 on an open interval X'\ A (as
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an example, we can take again the above proposed doubly exponential f(x)
and the standard normal g(x)). Then

B AV
D¢<P,Q>—/Ag¢(g)du+ P(X\A) + QX A)

so that (2.1) holds for the partitions (2.8). Similarly as above, Q(X \ A) > 0
implies that these partitions do not satisfy (2.2).

3 Rate of convergence

This section is a continuation of Section 2. We study the rate of convergence
of the x2-divergences x*(P, Q|Px) to x*(P, Q) in the cases where x*(P, Q) is
finite as well as infinite.

We restrict ourselves to the finite sequences of partitions

P ={Ak1, ..., A}

such that, for sufficiently large I' > 0,

k Join, (Ag;) > 1/T" for all k (3.1)
and/or
klrg]a;(k Q(Ax;) <T' for all k. (3.2)

Special attention is paid to the partitions into (Q-equiprobable intervals where
Q(Ayj) = % forall 1 < j <k and all k, (3.3)

so that (3.1) and (3.2) hold for I' = 1.
Let G(z) = Q((—o0,2) N X) be the distribution function of ) which is
by assumption strictly increasing on X. It transforms the open interval X

onto Y = (0, 1), the distribution @ into the Lebesgue measure on (0,1) and
the ¢-divergences (1.1) into formally simpler integrals on (0, 1), namely

Dy(P.Q) = / o(p(y)) dy (3.4)

where
(G ()

p(y) 9y y € (0,1) (3.5)
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and G~! is the quantile function from [0, 1] to the closure [z_,z,] of X (the
generalized inverse of the function G). The function G also defines a one
to one relation between the partitions P, under consideration and interval
partitions of (0,1). If {zy; : 0 < j < k} are the cutpoints of X leading
to Pr (with 2o and xy, being the possibly infinite endpoints of X’) and
Yo = 0 < yp1 < ... < ygr = 1 are similar cutpoints of (0,1) leading to an
interval partition of (0,1) then this relation is represented by the formulas

G(rrj) =yr; or xpj =G y), 0<j<k. (3.6)

Partitions related by (3.6) satisfy the relation

Q(Akj) = Yrj — Urj-1, 1<j<k (3.7)
or, more generally, the probabilities defined in (1.4) satisfy the relations
Ykj Ykj
o= [ pdy and = [ ay (33
Yk,j—1 Yk,j—1

where p(y) is given by (3.5). It follows from here for example that the
cutpoints zy; of partitions Py, satisfying (3.3) are uniquely defined by

my = G yy) for uy =3, 0<j<k (3.9)
and ! I
Tk S Ykj — Ykj—1 = 7 1<j<k, (3.10)

for the cutpoints y;; obtained by (3.6) from the partition P}, satisfying (3.1)
and (3.2).

By (3.4) and (3.8), the x*-divergences under consideration can be ex-
pressed as follows

C(PQ) = / P(y) dy — 1,
(3.11)

k

VC(PQIPY =Y ———— ( [ dy) 1

j=1 Ykj — Yk,j—1

Example 3. Let us consider the situation where X = ) = (0,1) and the
probability measures P and () are defined by the distribution functions

4x/3 for 0<x<1/2
F(z) = (G(r))* and G(x) =
2¢/3+1/3 for 1/2<zx<1.
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By (3.5) and (3.11),

! 1

ply)=2y and X} (P,Q)= 4/ ydy—1==.
0

Let Pj, be the uniform partition of X = (0, 1) defined by the cutpoints x;; =
j/k for 0 < j < k and P; be the Q-uniform partition by the cutpoints Thj =
G (zg;) for 0 < j < k. We shall compare x*(P,Q|Py) and x*(P, Q|P;).
Assuming for simplicity that & is even we see that

45/ (3k) for 0<j<k/2
Yk =
25/(3k)+1/3 for k/2<zx<k

and y;; = G(xy;) = xx; are the cutpoints defined by (3.6). Hence by (3.8)
and (3.11),

2
k [ (Yrj) F<yk,jfl)]
P Pr) —1
Q| k ; yk] 1
and N N )
k F -
- :Z[ %) @]

— Tk j—
j=1 k,j—1

where ﬁ(y) = y? is primitive to p(y). Substituting the values of yi; and zy;
specified above we get

k/2 . 4 2
> [(45/(3k))* — (45 — 1)/ (3k))?]
k . . 2
[(25/(3k) +1/3)* = (2(j — 1)/(3k) + 1/3)?]
R 2/(3h) :

and

k . 2 . 212
. 3/k) = (1 —1)/k
eramp = SO = G- /BF

: 1/k

7j=1
Applying the substitution j = k/2 + ¢ to k/2 < j < k in the formula for
X2(P, Q|Py,) and using repeatedly the formula

k/2
Zj2 _ k(E+1D(E+2)

24 ’

j=1
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we obtain for every k under consideration

erom = (1- 1)

and . |
2 L -
v aro =1 (- 1)

Thus x?(P, Q|Py) is a four times less accurate approximation of x?(P, Q) =
1/3 than x2(P,Q|P;}), i. e. the Q-uniform quantization P; is for all k sig-
nificantly better than the standard uniform quantization P.

In the last example the reduced x2-divergences were of the form x*(P, Q)—
p/k* where p = 4/3 or p = 1/3 depending on whether the reduction was
due to the quantization P, or P; respectively. The next theorem shows
that if x?(P,Q) < oo then for the Q-uniform partitions P} the difference
Y2(P, Q) — x*(P,Q|Py) tends to zero typically with the rate at least 1/k?
for £ tending to infinity. For regular P, () it shows that this rate is exactly
1/k? and we explicitly evaluate the coefficient p = p(P, Q) at 1/k* in the
asymptotic expansion of the difference. Note that in this theorem and in the
sequel, the asymptotic formulas are considered for kK — oo unless otherwise
explicitly stated.

Theorem 2 Let p(y) defined by (3.5) be twice continuously differentiable on
(0,1) with first and second derivatives p(y) and p(y), and let p(y) be bounded
on (0,1). Then x*(P,Q) is finite and

CP.QIPY = 1(PQ) -0 (45 ) (3.12)
for all sequences { Py} satisfying (3.1) and (3.2). If { Py} satisfies (3.3) then
erap) = e - 252 o (1) (3.13
where
1
pP.Q) =35 [ 1)+ pw)it) dy > 0. (314)
0

Proof. Let us start with a detailed proof of the second assertion which is
more complicated. Suppose that {Py} satisfies (3.3) so that

1
ykj — yk,jfl = E (315)
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If pj = (Wnj—1 + Yr;)/2 then for y € (yrj—1, yy)

p(y) = py;) + D) (Y — Yi;) + P

where Ry;(y) is the remainder in the Taylor series expansion. Since y varies in
an interval of length 1/k, the assumptions imply R;(y) = o (1/k*) uniformly
for all y € (yx,j—1,yx;) and 1 < j < k. Therefore

P*(Y) = 0> (U;) + 206U)0 Wi ) (Y — Ury) + pTri) (Y — Uiy)* + 0 (1/K?)

where p(y) denotes the integrand of (3.14). Further,

/yk_j py) dy = @ +o0(1/k%)

e v 2G)  Piy)
kg " Wrj) | Pk 1
2 dy = J J .
/yk_ ) dy =T o +O(k:3)
Jj—1
Consequently
L 1 < 1 <
2 . 2 /(— _
[P r= )+ g Lot + o ()
and
k 2
Ykj
kz(/ p(y)dy) 1S g o ()
j*l k,j—1

Since p(y) is Riemann integrable it holds

Z p(hy) = /Op(y) dy+o0(1) = p(P,Q) +0(1)

and the previous two formulas imply that

E(L o) - [ 252ai)

Now (3.13) follows from (3.11) and (3.15). The first assertion can be proved
by repeating similar steps with the formula (3.15) for yg; — v j—1 = Q(Ax;)
replaced with (3.9). O

15



Thus in the regular models of Theorem 2, the divergence x?(P, Q) is finite
and the quantizations into ()-equiprobable or nearly ()-equiprobable states

lead to a quadratic rate of convergence in (2.1).

Example 4. It is easy to see that the model of Example 3 with the ()-uniform
quantization P; satisfies all assumptions of Theorem 2. In this model (3.5)
yields p(y) = 2y so that (3.14) implies p(P,@Q) = 1/3. Thus Example 3
verified by a direct calculation that in this concrete model (3.13) holds with
o(1/k*) = 0 for all even k > 1. The calculation indicates that (3.13) holds
with o(1/k?) # 0 also for odd k > 1. Let us now illustrate the applicability
of Theorem 2 in one of the most familiar statistical models. Namely, let P
and @ be from the logistic family on X = R with distribution functions

ex—el ez—@g
Fy, (x) = 15 and Fy, () = m791 7 0
and densities
ex—el em—@g
_ d — _
1@ = ey ad 9@ = 5oy
respectively. Here
G y) =0y +In—— forye(0,1)
so that
9(G ) =y(1 —y)
and

F(G™Hy) = ry(1=y) for 7 =e%27% > 0,7 £ 1.

[1+y(r =P
Therefore the function (3.5) takes on the form

L+y(r—1)]?

py) = [

for 7 given in (3.16), and its derivatives are

—27(1 — 1) 67(T —1)2

p(y)z[ E and ﬁ(y)z[

l+y(r—1)

7_2

THy(r— 1)

p(y)z[

16

I+y(r—1)*

We see that the assumptions of Theorem 2 are satisfied and that

(3.16)



and
107%(7 —1)2

14+ y(r—1))%

Py) + p)ily) = [

Hence the y*-divergence of (3.11) is

C(P.Q) = (r — 1)(7'23—1- 27 + 3)

for 7 given in (3.16). By Theorem 2, the reduced value x?(P, Q|Py) of this
divergence after the quantization of X by the cutpoints

xkj:Gfl(j/k)zeerlnkj L 1<j<k-1

satisfies the asymptotic relation (3.13) with

20r =12 (T + B+ 247+ 1)
3

p(P,Q) =

for the same 7 as above.

The next theorem deals with the rate of convergence in (2.1) in the case
where x?(P, Q) is infinite. We use the terminology introduced by the three
following definitions. For illustration of the concepts defined there we refer
to Example 5 below.

Definition 2 A nonnegative sequence sy, is said to be of the order of at most
k¢ (in symbols, s, < k°) or at least k¢ (in symbols, sy = k¢) if s;,/k* — 0

for all b > ¢, or s, /k® — oo for all b < ¢, respectively. If s, < k¢ and also
sk 2 k¢ then we say that sy is of the order of k¢ (in symbols s;, =~ k°).

The following definition deals with the nonnegative functions p(y) of (3.5)
leading to infinite divergence x*(P,Q). We see from (3.11) that such func-
tions must be unbounded on the definition domain (0,1).

Definition 3 We say that the function p is reqularly unbounded if its exten-
sion in [0, 1] is bounded except in neighborhoods of finitely many points. If it
is not bounded in a right (left) neighborhood of y € [0, 1] then it is assumed
that h(t) = p(y + 1/t) (or h(t) = p(y — 1/t)) varies reqularly at infinity, i.e.
that for sufficiently large t > 0 and some p € R

h(t) = t°A(t) (3.17)
where \(t) varies slowly at infinity in the sense that

I Atar)
i (1)

=1 for any o > 0.

17



In the next definition it is useful to take into account that the moment
function M, (P, Q) defined by (1.16) is skew symmetric about a = 1/2 in the
sense that M;_,(P,Q) = M,(Q, P) and 0 < M,(P,Q) < 1 for a € [0, 1].

Definition 4 The values
ar =ar(P,Q)=sup{a>1:M,(P,Q) < oo}

and

a_=a_(P,Q)=inf{a <0:M,(P,Q) < oo}

are maximal and minimal effective arquments of the moment function. The

value
2 — a,+

c=c(P,Q)

A+
assumed to be -1 when a; = oo and taking on values from the interval (—1, 1]
when ay < 0o, is said to be a characteristic exponent of P and Q).

Note that Definition 3 summarizes properties of p(y) previously consid-
ered by Kallenberg et al. (1985). The following theorem extends Propositions
4.2 and 4.4 of these authors.

Theorem 3 If the characteristic exponent ¢ = c(P, Q) is negative, i.e. if
the mazimal effective argument a, (P,Q) > 2, then x*(P,Q) < oco. If c is
positive, i.e. if ay (P, Q) < 2 then x*(P,Q) = oco. In the latter case

X(P, QIPr) S k° (3.18)
provided {Py} satisfies (3.1) and
X(P, QIPr) 2 k° (3.19)

provided { Py} satisfies (3.2) and p(y) is regularly unbounded in the sense of
Definition 3. Therefore in the models with positive characteristic exponent c

X*(P, Q|Py) =~ k° (3.20)
provided all the mentioned conditions hold.

Proof. The first assertion follows directly from Lemma A.2 in the Appendix.
To prove (3.18), put by = 1 if ¢ = 1 and by € (¢, 1) otherwise. Then M, (P, Q)
is finite for ag = 2/(1+b) and, by Lemma A.3, the sequence k=% x?(P, Q|Py)
is bounded. This means that for all b > by (and, consequently, for all b > ¢)

KX (P.Q|Px) — 0

18



i.e. (3.18) holds. Relation (3.19) follows directly from Lemma A.4 and (3.20)
is clear. O

Example 5. A simple application of Theorem 3 is obtained when P and @
are probability measures on the observation space X = (0, 1) with distribu-
tion functions F(x) = Fp(x) = 217 for some 0 < # < 1 and G(z) = . Then
f(x) = (1 — 0)x=? and (3.5) implies that p(y) = (1 — 0)y~? for Y = (0,1)
which is a regularly unbounded function on ) in the sense of Definition 3.
By (3.11) and (1.16),

[ 62/(1—-20) if 0<6<1/2
X2<P’Q>_{oo it 1/2<0<1.

and
(e ={ &7 IS

Hence the maximal effective argument is ay = 1/6 and, by Definition 4,
the characteristic exponent is ¢ = ¢(P,@Q) = 20 — 1. It is in the interval
(—=1,0) for 0 < # < 1/2 and in the interval (0,1) for 1/2 < 6 < 1. Let
{Pr} be the sequence of uniform partitions of X’ into k cells. Since these
partitions are also Q-uniform, they satisfy (3.3). We see that all assumptions
of Theorem 3 are satisfied. Therefore this theorem says that if 0 < § < 1/2
then x?(P,Q) < oo and if 1/2 < 0 < 1 then x*(P, Q) = oo which agrees with
the direct above computations. The case § = 1/2 is ignored by the theorem,
but it also says that if 1/2 < 6 < 1 then x*(P, Q|Py) ~ k*~1. By Definition
2, this means that k?~! characterizes the rate of convergence of (P, Q|Py)
to x2(P,Q) = oo in the sense that, asymptotically for k tending to infinity,
X2(P,Q|Py) = k*~1*+°) This is a new fact about the special model under
consideration. Its direct verification requires to evaluate

vrapy) =y W <1<;'k— /R

J=1

(cf. (3.8)-(3.11)) for 1/2 < 6 < 1, or at least to prove the asymptotic relation

—(j — 1% = o(lnk)

IIM?r

for 0 < a < 1/2. These tasks are not so easy.

The results of this section are relevant to the theory of optimal quan-
tizations P; that maximize the divergence x*(P,Q|Py) over all k-elements
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interval partitions P, of the observation space. Since the @-uniform inter-
val partitions Py satisfy (3.3), and consequently also (3.1) and (3.2), the
asymptotic representation (3.20) obtainable for these partitions can be used
to estimate from below the maximal divergence x?(P,Q|P;). Similarly we
can use the estimate

(p.Q - (r.ar < D 1 (,%)

for p(P, Q) given by (3.14) when P, () are regular in the sense of Theorem
2. An analogous idea was recently applied by Mayoral et al (2003) to the
partitions P} that maximize the Fisher information in parametric models.
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Appendix

Lemma A.1 Let () be an absolutely continuous probability measure on an
interval X C R. If a sequence of intervals A, C X satisfies the condition

limsup Q(Ax) > 0

k—o0
then there exists an open interval B and a subsequence {Ay, } of {Ay} such
that B is contained in Ay, for all sufficiently large n and Q(B) > 0.

Proof. By assumption, there exists a subsequence {A;. :r € 1,2,...} such
that
inf Q(Ayg,) > 25 for some 6 > 0. (A1)

Let (aj,az) C & be such that Q((a;,as)) > 1 — §. Define intervals
BT = Akr N (al, CLQ).
By (A.1), these intervals are nonvoid with

inf Q(B,) > 6.

Since the endpoints by, and by, of B, (where by, < by,.) are in the compact
set [a1, as], there exists a subsequence {r,} of {r} for which both the limits

by = lim by, and by = lim by,

n—oo

exist in [ay, az]. By continuity of measure @) with respect to the set-theoretic
convergence of events,

Q((b1,02)) = lim Q(B,,) > 4.

n—oo

Therefore by > b; and any nonvoid open subinterval B C (b1, by) together
with the subsequence Ay, where k, is the index k, for which r = r, satisfy
the statement of the lemma. [

The remaining lemmas are applied in Section 3. Therefore in these lem-
mas we consider the same P, Q) and P), as in Section 3.

Lemma A.2 The moment generating function (1.16) satisfies for all 0 <
a1 < as and all P, () the inequality

(M, (P, Q)™ < (Mo, (P, Q)" .
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In particular, the divergence x*(P,Q) = My(P,Q) — 1 is bounded for all
0<a; <2,ay > 2 and P, () as follows

(M, (P, Q)™ =1 < X*(P,Q) < (Mo, (P, Q)7 — 1.

Proof. The first assertion follows from the convexity of () = t2/® and
the second assertion is a trivial consequence. O

Lemma A.3 If Py satisfies (3.1) then for every 1 < a < 2 and for I which
appears in (3.1)

KM (P, QIPy) < TE0(M, (P, Q)% .
Consequently for a sequence {Py} satisfying (3.1) and all a € [1, 2]
sup K203 (P, QIPy) < T/ (M, (P, Q)"
k>1

Proof. Let k > 1. If a is equal to 1 then M, (P, Q) is also equal to 1. As we
have

k 2
My (P, Q[Pr) = Zij (&>
j=1

qkj

Dk
max [ —
1<5<k \ Qj

< kI (by (3.1)),

IN

both inequalities easily follow. Now suppose that 1 < a < 2 and put b =
(2 —a)/a. If b= 0 then the assertion is trivial. If b > 0 then

k N 2
My(P.QIPy) = > a (pi)
j=1

dk;j
D ab k P a
kj kj
< max [ — qk(—) ab+a =2
1<j<k (qkj> ; T\ ar ( )

ab
< (max ]ﬁ) M,(P,Q).

1<5<k Gk

where the last inequality follows from the formula for M, (P, Q|Py) in (1.17)
and from the inequality (1.19). By (3.8) and the Hélder inequality

Yk 11/ Yk 1/a
Prj = / p(y) dy < g / p(y)* dy
Yk, j—1 Yk, j—1
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so that

’ 1/a
Dj “1ja | [ u

Yk,j—1

1/a
Ykj
< Vel (max / p(y)* dy) (see (3.1))
Yk,j—1

1<j<k

< TYeRYe(M(P,Q))Y* (see (1.16)).
Combining this with the previous inequality, we obtain
K My(P,QIPy) < T (M, (P, Q)"
which completes the proof. O

The proof of the previous lemma uses the arguments of the proof of Propo-
sition 4.2 in Kallenberg et al. (1985). The following lemma generalizes Propo-
sition 4.4 of the same paper. Notice that its statement is trivial for b < 0
because the assumption (3.2) implies (2.2) so that x*(P, Q|Px) — x*(P, Q)
for all P,@ by Theorem 1. Therefore if b < 0 then our assumption P # @
implies k~x2(P, Q|Py) — oo automatically for all P,Q under consideration.

Lemma A.4. Let P,Q be probability measures with the function p(y)
bounded or regularly unbounded in the sense of Definition 3 and with a
characteristic exponent specified in Definition 4. If {Py} satisfies (3.2) then
for every b < ¢

klglgo k=3 (P, Q|Py) = oo.

Proof. If p(y) is bounded on (0,1) then ¢ = —1 so that the statement is
trivial. It remains to be trivial unless ¢ > 0, i.e. unless the maximal effective
argument a, of the moment function M,(P,Q) is below 2. Therefore let
ay < 2 and

/p(y)“dy:oo if a>a,
U

for a neighborhood U C [0, 1] of at least one point y € [0, 1]. Let for simplicity
the point be y = 0 and put for brevity y; = yx1 for yx; defined in (3.6). Since
(3.2) holds, we see that k=° > (y,/T")°. Hence, by (3.11), it suffices to prove
that the expression

Yk 2 2
p(y) dy _ Y
yZM = (y;ib /2 / p(y) dy)
0

Yk
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tends to infinity if 0 < b < c¢. For every 0 < b < ¢ take a such that
ay <a< ——.

Note that such a exists since 2/(b+ 1) > a; for all 0 < b < ¢. By the
assumptions,

Yk Yk
/ p(y)" dy = 0o and / py) dy < oo.
0 0

If we put ¢ = 1/y, then, by (3.8), p(1/t) = t*A(t) for A(t) slowly varying at
infinity, so that

/ t2\(t)*dt = oo and / P2\ (t)dt < 0.
tE ty

Since \%(t) is slowly varying at infinity too, the first assertion of the lemma
on page 280 of Feller (1966) can be applied to both these relations. The first
one implies in this manner that p > 1/a and the second one implies p < 1.
Now there are two possibilities : either p = 1 in which case

/ tIA(t)dt < oo
tg

or p < 1. In both these cases the second assertion of the Feller lemma implies
that

/ sP72N(s) ds = P~ A(t)
t
where

A(E) = £ / " 20(s) ds

is slowly varying at infinity. By Lemma 2 on p. 277 of Feller, A(t) >t~ for
any fixed € > 0 and all ¢ sufficiently large. Therefore

e’} Yk
ty / " N(s)ds = y,.” / p(y) dy — o0
te 0

whenever 3 > 1 — p. By definition of a and the inequality p > 1/a,

1-0b 1
—>1=—=2>1-p
2 a

so that the desired relation
Yk
b—1)/2
o / p(y) dy — oo
0

24



is proved. O
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