Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion

SAMPLING DENSITIES OF PARTICLE FILTER: A SURVEY AND COMPARISON

Miroslav Šimandl and Ondřej Straka

Research Centre Data, Algorithms, and Decision Making Department of Cybernetics University of West Bohemia in Pilsen Czech Republic

American Control Conference 2007

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction O	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
Outline	e				

- Introduction
- Particle filter
 - State estimation problem
 - Particle filter algorithm
- Sampling densities direct approach
- Sampling densities composite approach
- Numerical comparison
- Conclusion

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
•					
Ctata	a a time a ti				

State estimation

Consider a discrete time stochastic system:

$$\mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k) + \mathbf{e}_k, \quad k = 0, 1, 2, \dots$$

 $\mathbf{z}_k = \mathbf{h}_k(\mathbf{x}_k) + \mathbf{v}_k, \quad k = 0, 1, 2, \dots$

- \mathbf{x}_k is *nx* dimensional state vector with $p(\mathbf{x}_0)$
- z_k is nz dimensional measurement vector
- \mathbf{e}_k is white noise with known $p(\mathbf{e}_k)$
- \mathbf{v}_k is white noise with known $p(\mathbf{v}_k)$
- $\mathbf{f}_k(\mathbf{x}_k)$ and $\mathbf{h}_k(\mathbf{x}_k)$ are known vector functions

The aim of state estimation here is to find the filtering pdf $p(\mathbf{x}_k | \mathbf{z}^k)$, where $\mathbf{z}^k = [\mathbf{z}_0^T, \dots \mathbf{z}_k^T]^T$

Introduction O	Particle filter ●○	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
Particl	e filter				

- General solution of the filtering problem is given by the Bayesian Recursive Relations (BRR).
- Closed form solution of the BRR is available for a few special cases only (e.g. linear Gaussian systems).
- Thus an approximate solution of the BRR is usually searched.
- Solution of the BRR by the particle filter is based on approximating the filtering pdf by a set of samples (particles) and corresponding weights as

$$r_N(\mathbf{x}_k|\mathbf{z}^k) = \sum_{i=1}^N w_k^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}),$$

 $\mathbf{x}_{k}^{(i)}$ - samples, $w_{k}^{(i)}$ - normalized weights,

 δ - the Dirac function ($\delta(\mathbf{x}) = 0$ for $\mathbf{x} \neq 0$, $\int \delta(\mathbf{x}) d\mathbf{x} = 1$).

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

00

Particle filter

SD - direct approach

SD - composite approach

Numerical illustration

Conclusion

Miroslav Šimandl and Ondřei Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
		0000			

Sampling densities - general considerations

- Support of SD must contain support of the filtering pdf (importance sampling)
- Quality perspective: shape of SD must be as close to the filtering pdf as possible
- Implementation perspective: calculation of the weights must be as simple as possible

SD design techniques proceed within two approaches

Direct approach

- develops original concepts of the SD design
- proposes enhancements to the prior SD

Composite approach

• Utilization of another filtering technique - its filtering pdf is used as the SD

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

IntroductionParticle filterooo

SD - direct approach ○●○○ SD - composite approach

Numerical illustration

Conclusion

Direct approach - optimal and prior SD's

optimal SD

(Zaritskii, Svetnik, Shimelevich 1975)

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(1:N)}, \mathbf{z}_{k}) = \sum_{i=1}^{N} \frac{1}{N} \rho(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{*(i)}, \mathbf{z}_{k})$$
$$\tilde{w}_{k}^{(i)} = \rho(\mathbf{z}_{k}|\mathbf{x}_{k-1}^{*(i)}) w_{k-1}^{*(i)}$$

- minimizes variance of the weights
- weights can be computed in advance
- × hard to find its explicit form

prior SD

(Handshin 1970, Gordon et al. 1993)

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(1:N)}, \mathbf{z}_{k}) = \sum_{i=1}^{N} \frac{1}{N} \rho(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(i)})$$
$$\tilde{w}_{k}^{(i)} = \rho(\mathbf{z}_{k}|\mathbf{x}_{k}^{*(i)}) w_{k-1}^{*(i)}$$

- used in the famous Bootstrap filter
- \mathbf{x} \mathbf{z}_k is ignored

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

 Introduction
 Particle filter
 SD - direct approach
 SD

 ○
 ○○
 ○○●○
 ○○

SD - composite approach

Numerical illustration

Conclusion

Direct approach - fixed and auxiliary SD's

fixed SD

(Tanizaki 1993)

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(1:N)}, \mathbf{z}_{k}) = \pi(\mathbf{x}_{k})$$
$$\tilde{w}_{k}^{(i)} = \frac{p(\mathbf{z}_{k}|\mathbf{x}_{k}^{*(i)})p(\mathbf{x}_{k}^{*(i)}|\mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_{k}^{*(i)})} w_{k-1}^{*(i)}$$

× sampling without information about the model

auxiliary SD

(Pitt and Shephard 1999)

$$\pi(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(1:N)}, \mathbf{z}_{k}) = \sum_{i=1}^{N} \lambda_{k}^{(i)} p(\mathbf{x}_{k}|\mathbf{x}_{k-1}^{(i)}), \quad \lambda_{k}^{(i)} \propto p(\mathbf{z}_{k}|\mu_{k}^{(i)})$$
$$\tilde{w}_{k}^{(i)} = \frac{p(\mathbf{z}_{k}|\mathbf{x}_{k}^{(i)})}{\lambda_{k}^{(i)}} w_{k-1}^{*(j_{i})}$$

- primary weight $\lambda_k^{(i)}$ predicts quality of the sample $\mathbf{x}_k^{(i)}$ according to \mathbf{z}_k
- various approaches to primary weights calculation
- usually higher quality than prior SD

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

troduction	Particle filter	SD - direct approa
		0000

Direct approach - likelihood SD and others

ich

likelihood SD

(Chen 2003)

$$\pi(\mathbf{x}_k|\mathbf{x}_{k-1}^{(1:N)},\mathbf{z}_k)\propto p(\mathbf{z}_k|\mathbf{x}_k)$$

x a pdf of \mathbf{x}_k must be derived from the likelihood (may not be possible)

advantageous for measurement pdf tighter than transition pdf

other SD design techniques of the direct approach

- gradient based prior SD sampling from prior SD a moving the sample using the gradient descent technique
- hybrid SD combination of optimal and other SD's for multi-dimensional systems
- bridging density sampling replaces single transition by a sequence of bridging densities placed between the initial density and the final density
- *partitioned sampling* idea: to partition the state space and to apply the dynamics for each partition sequentially

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction O	Particle filter	SD - direct approach	SD - composite approach ●○○	Numerical illustration	Conclusion
Compo	osite ap	proach			

- combination of the importance sampling technique with another nonlinear filtering method acting as a generator of SD
- the filtering methods include
 - *local methods* providing results valid in a small area in the state space
 - global methods providing results valid in almost whole state space
- utilization of another filtering method increases computational demands of particle filters

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
			000		

Composite approach - general scheme

at each time instant the approximate filtering pdf is given by

$$r_N(\mathbf{x}_k|\mathbf{z}^k) = \sum_{i=1}^N w_k^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{*(i)})$$

according to the Bayesian recursive relations

$$\hat{p}(\mathbf{x}_{k+1}|\mathbf{z}^k) = \int p(\mathbf{x}_{k+1}|\mathbf{x}_k) r_N(\mathbf{x}_k|\mathbf{z}^k) \mathrm{d}\mathbf{x}_k = \sum_{i=1}^N w_k^{(i)} p(\mathbf{x}_{k+1}|\mathbf{x}_k^{*(i)})$$

approximation of the filtering pdf given by

$$\hat{p}(\mathbf{x}_{k+1}|\mathbf{z}^{k+1}) = C^{-1}\hat{p}(\mathbf{x}_{k+1}|\mathbf{z}^{k})\rho(\mathbf{z}_{k+1}|\mathbf{x}_{k+1})$$

is computed using the filtering method and used as a SD

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Composite approach - filtering methods

Some of the filtering methods used a SD generator:

- Extended Kalman filter (e.g. De Freitas et al. 2000, Chen, Liu 2000)
- Gaussian sum filter (Kotecha, Djuric 2003)
 - preferable for multimodal pdf of the noises
- Sigma point Kalman filter (van der Merwe, Wan 2003)
- Gaussian mixture sigma point Kalman filter (van der Merwe, Wan 2003)
 - preferable for multimodal pdf of the noises
- H_{∞} filter (Nishiyama 2005)

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
				00000	

Numerical illustration

System - nonlinear, non-Gaussian

$$\begin{aligned} \mathbf{x}_{k+1} &= \varphi_1 \cdot \mathbf{x}_k + 1 + \sin(\omega \pi k) + \mathbf{e}_k \quad p(\mathbf{e}_k) = G\{\mathbf{e}_k : 3, 2\} \\ \mathbf{z}_k &= \varphi_k \cdot \mathbf{x}_k^2 + \mathbf{v}_k \qquad p(\mathbf{v}_k) = \mathcal{N}\{\mathbf{v}_k : 0, 10^{-5}\} \\ p(\mathbf{x}_0) &= \mathcal{N}\{\mathbf{x}_0 : 0, 12\} \\ \varphi_1 &= 0.5, \varphi_2 = 0.2, \ \omega = 0.04 \\ k &= 0, 1, \dots, 19 \end{aligned}$$
Note: variance of measurement noise (var[\mathbf{v}_k] = 10⁻⁵) is smaller by six orders than variance of state noise (var[\mathbf{e}_k] = 12)

University of West Bohemia, Czech Republic

Miroslav Šimandl and Ondřej Straka

IntroductionParticle filterooo

Sampling densities utilized

Direct approach

- prior (PSD)
- point auxiliary (PASD)
- unscented transformation auxiliary (UTASD)
- likelihood (LSD)

Composite approach

- extended Kalman filter based (EKFSD)
- Gaussian sum filter based (GSFSD)
- unscented Kalman filter based (UKFSD)
- Gaussian mixture unscented Kalman filter based (GMUKFSD)

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
				00000	

Point estimates comparison

Criterion - mean square error

$$V_{MSE} = rac{1}{KS} \sum_{k=1,s=1}^{K,S} \left(x_k(s) - \hat{x}_k(s) \right)^2, \quad \hat{x}_k(s) = \sum_{i=1}^N w_k^{(i)}(s) x_k^{(i)}(s)$$

Result	Results for N=100 samples, S=1000 simulations								
	_		PSI	C	PASD	UTASD	LSD		l
	-	V _{MSE}	13.5	53	13.72	7.27	0.86		I
		EKF	SD	GS	FSD	UKFSD	GMUKFS	SD	l
-	V _{MSE}	2.0	6	1.	.28	1.49	1.28		

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction

Particle filter SD - direct approach

SD - composite approach

Numerical illustration

Conclusion

S.

Filtering PDF estimates comparison

Criterion

$$V_{PDF} = 1 - \frac{1}{KS} \sum_{k=1,s=1}^{K,S} \int \min\left(p(x_k | z^k(s)), r_N(x_k | z^k(s))\right) \mathrm{d}x_k$$

 $V_{PDF} \in [0, 1]$, S = 1000 MC simulations, N = 50, 100, 500, 1000 samples

University of West Bohemia, Czech Republic

Introduction O	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration ○○○○●	Conclusion
Comp	utationa	l time			

Length of a time step in the MATLAB environment, 3.2 GHz F											
	_	PSD)	PASD	UTASD		LSD			
	_	Т	0.0020		0.0020	0.0	030	0.0	080		
		E۲	KFSD	G	SFSD	UKF	SD	GML	JKFS	D	
	Т	0.	0075	0	.0170	0.00	60	0.0	0185		

 SD's of the composite approach almost by an order more computational demanding than the SD's of the direct approach

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction O	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion ●○○					
Conclu	Conclusion									

Direct approach SD's

- generally, it is essential to choose SD according to system description (functions and pdf's of the noises)
- the **optimal** SD is the best choice but its explicit form is hard to be found
- prior SD is generic choice but usually provide low quality estimates
- auxiliary SD's a slightly better choice than the prior SD
- due to very accurate measurement in the example, the **likelihood** SD provided excellent results

Composite approach SD's

- SD's bring usually estimate quality increase paid by theoretical complexity
- high computational demands with respect to direct approach SD's

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion ○●○				
Conclusion									

- for high-dimensional cases, hybrid SD may represent a profitable choice
- bridging density sampling improves degeneracy problem and accuracy of the samples at the expense of high computational burden

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic

Introduction	Particle filter	SD - direct approach	SD - composite approach	Numerical illustration	Conclusion
					000

Thank you

Miroslav Šimandl and Ondřej Straka

University of West Bohemia, Czech Republic