

Ondřej Straka¹, Miroslav Flídr¹, Jindřich Duník¹, Miroslav Šimandl¹ and Erik Blasch²

¹ Department of Cybernetics & Research Centre Data - Algorithms - Decision making Faculty of Applied Sciences, University of West Bohemia, Czech Republic

> ² Defence R&D Canada-Valcartier 2459 Pie-XI Blvd. North Québec City, QB G3J 1X5

FUSION 2010, July, Edinburgh

NEF 000	Modelling component	Estimation component	Performance evaluation component	Case study	Conclusion
Out	line				

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Nonlinear Estimation Framework (NEF)
- 2 NEF modelling component
- INEF estimation component
- INEF performance evaluation component
- S Case study tracking a ship
- Oncluding remarks

Introduction of the Nonlinear Estimation Framework (NEF)

Goal of the paper

to introduce NEF and illustrate its use in target tracking problems

- a collection of MATLAB classes and functions for
 - modelling system behavior
 - state estimation
 - evaluation of the results
- development driven by the need for a tool that can
 - evaluate the quality of a state estimation method in arbitrary case
 - compare performance of several state estimators
 - provide means for effortless rapid prototyping of new state estimators
- most recent generation of software toolboxes developed by authors (former NFTools and NFToolsCD).

NEF ○●○	Modelling component	Estimation component	Performance evaluation component 00	Case study	Conclusion 000
Key	features of	the NEF			

- structural and probabilistic modelling,
- support for time-varying models,
- support for filtering, multi-step prediction and fixed-lag smoothing,
- implementation of both standard and numerically stable estimation algorithms,
- full estimator parametrization by means of the standard MATLAB property-value mechanism,

▲□▶▲□▶▲□▶▲□▶ □ のQで

• complete evaluation of estimate quality.

NEF ○○●	Modelling component	Estimation component	Performance evaluation component	Case study	Conclusion 000
Cor	nponents of	the NEF			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

NEF 000	Modelling component ●○	Estimation component	Performance evaluation component	Case study	Conclusion
Mo	delling com	oonent			

Structural description

$$x_{k+1} = f_k(x_k, u_k, w_k),$$
 $k = 0, 1, ...,$
 $z_k = h_k(x_k, u_k, v_k),$ $k = 0, 1, ...,$

$$p(\boldsymbol{w}_k), p(\boldsymbol{v}_k), p(\boldsymbol{x}_0)$$

• $\boldsymbol{x}_k \in \mathcal{R}^{n_x}, \boldsymbol{z}_k \in \mathcal{R}^{n_z}, \boldsymbol{u}_k \in \mathcal{R}^{n_u}, \boldsymbol{w}_k \in \mathcal{R}^{n_x}, \boldsymbol{v}_k \in \mathcal{R}^{n_z}$

Probabilistic description

$$p(\mathbf{x}_{k+1}|\mathbf{x}_k, \mathbf{u}_k), k = 0, 1, \dots,$$

 $p(\mathbf{z}_k|\mathbf{x}_k, \mathbf{u}_k), k = 0, 1, \dots.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $p(\boldsymbol{x}_0)$

 NEF
 Modelling component
 Estimation component
 Performance evaluation component

 00
 0
 00
 00
 00

Case study Conclusion

NEF 000	Modelling component	Estimation component ●○○	Performance evaluation component	Case study	Conclusion
Esti	mation				

The estimate of the state x_k

given by the posterior pdf $p(\boldsymbol{x}_k | \boldsymbol{z}^{\ell}, \boldsymbol{u}^{\ell})$, where \boldsymbol{z}^{ℓ} is the sequence of measurements up to time instant ℓ , i.e., $\boldsymbol{z}^{\ell} \triangleq [\boldsymbol{z}_0^T, \boldsymbol{z}_1^T, \dots, \boldsymbol{z}_{\ell}^T]^T$.

- If $\ell = k$, the problem is called *filtering*.
- If $\ell < k$, the problem is called *prediction*.
- If $\ell > k$, the problem is called *smoothing*.

Solution to the estimation problem

- provided by the Bayesian functional relations (BFR)
- analytically tractable for a few special models
- mostly an approximate solution is being looked for
- BFR idea is embodied by nefEstimator

Estimators implemented in the NEF estimation component

nefKalman, nefSKalman nefUDKalman	(extended) Kalman filter (standard, square- root and UD versions)
nefDD1,	central difference Kalman filter, divided dif-
nefSDD1,	ference filter $(1^{st} \text{ and } 2^{nd} \text{ order})$ (standard and
nefDD2	square-root version)
nefUKF,	unscented Kalman filter (standard and square-
nefSUKF	root version), cubature Kalman filter
nefItKalman	iterated Kalman filter
nefGSM	Gaussian sum filter
nefPF	bootstrap filter, generic particle filter, auxil- iary particle filter, unscented particle filter
nefEnKF	ensemble Kalman filter.

NEF	Modelling	component

Estimation component ○○● Performance evaluation component

Case study Conclusion

Estimation tasks supported by individual estimators

estimator	filtering	prediction	smoothing
nefKalman	\checkmark	\checkmark	\checkmark
nefSKalman	\checkmark	\checkmark	\checkmark
nefUDKalman	\checkmark	\checkmark	
nefItKalman	\checkmark	\checkmark	\checkmark
nefDD1	\checkmark	\checkmark	\checkmark
nefSDD1	\checkmark	\checkmark	\checkmark
nefDD2	\checkmark	\checkmark	\checkmark
nefUKF	\checkmark	\checkmark	\checkmark
nefSUKF	\checkmark	\checkmark	\checkmark
nefGSM	\checkmark	\checkmark	
nefPF	\checkmark	\checkmark	
nefEnKF	\checkmark	\checkmark	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

NEF 000	Modelling component	Estimation component	Performance evaluation component ●○	Case study	Conclusion
P	C	1.1			

Performance evaluation

Aim

- to measure estimation error
- to compare performance of several estimators against the true value of the state

Steps to measure performance

- collecting data from Monte Carlo simulations,
- extracting appropriate indicators from the conditional distribution of the state provided by individual estimators

▲□▶▲□▶▲□▶▲□▶ □ のQで

• evaluating the performance index

Performance indices implemented in the NEF

	ABSOLUTE ERROR MEASURES
MSEM	mean squared error matrix
RMSE	root mean squared error
AEE	average Euclidean error
HAE	harmonic average error
GAE	geometric average error
MEDE	median error
MODE	mode error
	RELATIVE ERROR MEASURES
RMSRE	root mean squared relative error
ARE	average Euclidean relative error
BEEQ	Bayesian estimation error quotient
EMER	estimation error relative to measurement error
	PERFORMANCE MEASURES
NCI	PERFORMANCE MEASURES non-credibility index
NCI ANEES	PERFORMANCE MEASURES non-credibility index average normalized estimation error squared

900

æ

NEF 000	Modelling component	Estimation component	Performance evaluation component	Case study ●○○○○○○	Conclusion
NEF	F in target tra	acking			

• Tracking a ship with unknown control

•
$$\boldsymbol{x}_k = [\boldsymbol{x}_k, \boldsymbol{y}_k, \dot{\boldsymbol{x}}_k, \dot{\boldsymbol{y}}_k]$$

۲

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{x}_k + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{u}_k + \boldsymbol{w}_k$$

- T = 0.02, \boldsymbol{w}_k is a Gaussian zero mean white noise with $Q = 10^{-6} \cdot \boldsymbol{I}$
- the control u_k is unknown \implies will be appended to the state variable

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

NEF in target tracking – modelling dynamics

dynamics function:

F =	[1	0	Т	0;
	0	1	0	Τ;
	0	0	1	0;
	0	0	0	1];
G =	[0]	0	1	0;
	0	0	0	1]';
Fm =	= [I	F (G; 2	zeros(2,4) eye(2)];
<pre>fm = nefLinFunction(Fm,[],eye(6));</pre>				

state noise:

```
Q = 1e-6*eye(4);
Qm = [Q zeros(4,2); zeros(2,4) 1e-3*eye(2)];
wm = nefGaussianRV(zeros(6,1),Qm);
```

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - のへで

 NEF
 Modelling component
 Estimation component
 Performance evaluation component
 Case study
 Conclusion

 NEF in target tracking – measurement
 O
 O
 O
 O
 O

position measured in polar coordinates

$$z_k = \begin{bmatrix} \arctan \frac{y_k}{x_k} \\ \sqrt{y_k^2 + x_k^2} \end{bmatrix} + \boldsymbol{v}_k,$$

 v_k Gaussian zero mean white noise with covariance matrix $R = \text{diag}[4 \cdot 10^{-4} (\pi/180); 1 \cdot 10^{-4}]$ measurement function:

```
hm = nefHandleFunction(@(x,u,v,t) ...
[atan(x(2)/x(1));sqrt(x(1)<sup>2</sup>+x(2)<sup>2</sup>)] + v,[6 0 2 0]);
```

measurement noise:

R = [4e-4*(pi/180)^2 0; 0 1e-4]; v = nefGaussianRV(zeros(2,1),R);

NEF 000	Modelling component	Estimation component	Performance evaluation component	Case study ○○○●○○○	Conclusion 000			
NEF in target tracking – measurement								

intial condition:

```
m0 = [20 50 0 -12 0 0]';
P0 = diag([le1 le1 le1 le1 le-1 le-1]);
x0m = nefGaussianRV(m0,P0);
```

model:

model = nefEqSystem(fm,hm,wm,v,x0m,'logLikelihood',LLH);

▲□▶▲□▶▲□▶▲□▶ □ のQで

estimators (PF and UKF)

```
PF = nefPF(model,'sampleSize',1000);
UKF = nefUKF(model);
```

NEF Modelling component

Estimation component

Performance evaluation component

Case study Con

Conclusion

NEF in target tracking – experiment setup

NEF in target tracking – performance evaluation

performance evaluators:

```
filters = 2;, mcrun = 10;
RMSE_PE = nefPerformanceEvaluator(...
model,K,mcrun,filters,'method','RMSE','idxState',[1:4]);
NCI_PE = nefPerformanceEvaluator(...
model,K,mcrun,filters,'method','NCI','idxState',[1:4]);
```

performing 10 Monte Carlo simulations:

```
for i = 1:mcrun
  [val_PF] = estimate(PF,z,u);
  [val_UKF] = estimate(UKF,z,u);
  for k = 1:K
    Data.state{1,k} = [x(:,k); u(:,k)];
    estData{1,1,k} = val_PF{k};
    estData{2,1,k} = val_UKF{k};
  end
  processData(RMSE_PE,Data,estData);
  processData(NCI_PE,Data,estData);
end
```


performance evaluators: obtaining the performance indices:

rmse = performanceValue(RMSE_PE); nci = performanceValue(NCI_PE);

NEF 000	Modelling component	Estimation component	Performance evaluation component	Case study	Conclusion ●○○		
Concluding remarks							

a suitable tool for testing estimator performance in target-tracking problems

• it provides:

• versatile description of discrete-time dynamic stochastic systems with continuous state,

▲□▶▲□▶▲□▶▲□▶ □ のQで

- a number of estimators,
- a number of performance indexes.

NEF 000	Modelling component	Estimation component	Performance evaluation component	Case study	Conclusion ○●○		
Concluding remarks (cont)							

• Benefits for:

beginners: problem specification which is reduced to its absolute minimum advanced users: the property-value mechanism to fully

customize the experiment parameters

- In addition (not shown):
 - rapid prototyping of user-defined estimators
 - complex models or performance evaluators

NEF 000	Modelling component	Estimation component	Performance evaluation component	Case study	Conclusion ○○●

http://nft.kky.zcu.cz/

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○