Non-myopic Innovations Dual Controller

Miroslav Flídr and Miroslav Šimandl

Department of Cybernetics & Research Centre Data, Algorithms and Decision Making Faculty of Applied Sciences University of West Bohemia

Miroslav Flídr and Miroslav Šimandl

ALCOSP 2010

Outline

1 Introduction to dual adaptive control

3 Non-myopic Innovations Dual Controller

- Formulation of the optimization problem
- Solution of the optimization problem
- Numerical example

Dual adaptive control

What is dual control?

- > Appears in control problems with unknown state and parameters
 - ⇒ the certainty equivalence property does not hold
 - \Rightarrow the problem is not separable and not neutral
- > Two conflicting goals meet control objective and improve estimation
- ➤ Aspects of dual control
 - ▷ **Caution** due to inherent uncertainties
 - Probing (Active learning) helps decrease the uncertainty about the unknown state and parameters

Optimal dual control problem

Cannot be mostly solved in closed form \Rightarrow suboptimal solutions

Suboptimal solutions to optimal dual control problem

Explicit dual controllers

Based on augmentation of cautious control mostly with constraining the control horizon to one-step.

- \Rightarrow with direct augmentation of cautious control
- \Rightarrow modification of the cost function

$$\mathcal{L}_k = \mathcal{L}_k^c + \lambda \mathcal{L}_k^p, \qquad \lambda \ge 0$$

Implicit dual controllers

Based om approximate solution of the Bellman optimization recursion.

- ⇒ with approximation of the Bellman function
- with approximation of probability density functions

Filatov N, Unbehauen H. "Survey of adaptive dual control methods". IEE Proceedings - Control Theory and Applications. 2000;147(1):118-128.

Innovations Dual Controller

Problem formulation

Find u_k^{N-1} that minimizes the criterion

$$J = E\left\{\sum_{k=0}^{N-1} (y_{k+1} - \bar{y}_{k+1})^2\right\}$$

subject to the system

 $y_{k+1} = b_0 u_k + \dots + b_m u_{k-m} + a_1 y_k + \dots + a_n y_{k-n} + e_{k+1}, \quad k = 0, \dots, N-1$

Innovations dual controller (IDC) - Millito et al. (1982)

IDC is solution of modified optimization problem

- **1** control horizon shortened to one step
- $\boldsymbol{2}$ the cost function is modified

$$J_k = E\left\{ (y_{k+1} - \bar{y}_{k+1})^2 - \lambda_{k+1} v_{k+1}^2 | y_0^k, u_0^{k-1} \right\}$$

- ⇒ the parameter $0 \le \lambda_{k+1} \le 1$ specifies the degree of compromise between control and estimation objectives
- \Rightarrow the innovations sequence v_{k+1} provides overall information about estimation quality

Goal: to design non-myopic innovations dual controller

Deficiencies of IDC

- **:** limited to one step ahead horizon \Rightarrow can suffer from myopic behavior
- tesigned only for SISO ARMAX systems

Requirements of feasible solution

- \checkmark computationally moderate not only for one step ahead horizon
- ✔ clear interpretation
- ✓ guarantees sufficient control quality
- ✓ moderate computational demands

Steps to fulfil the goal

- formulation of optimization problem with arbitrary control horizon
- choice of probability density function approximation that would make possible to find closed form solution.
- **3** assurance of both properties of the dual control

Goal: to design non-myopic innovations dual controller

Deficiencies of IDC

- **:** limited to one step ahead horizon \Rightarrow can suffer from myopic behavior
- * designed only for SISO ARMAX systems

Requirements of feasible solution

- \checkmark computationally moderate not only for one step ahead horizon
- ✔ clear interpretation
- ✓ guarantees sufficient control quality
- ✓ moderate computational demands

Steps to fulfil the goal

- formulation of optimization problem with arbitrary control horizon
- choice of probability density function approximation that would make possible to find closed form solution.
- assurance of both properties of the dual control

Testers des stress to des also de des tra	
Introduction to dual adaptiv	a control
introduction to dual adaptive	. control

Goal of the paper

Non-myopic Innovations Dual Controller

Conclusion

Formulation of the optimization problem

Considered system

$\boldsymbol{s}_{k+1} = \boldsymbol{A}(\boldsymbol{\theta}_k)\boldsymbol{s}_k + \boldsymbol{B}(\boldsymbol{\theta}_k)\boldsymbol{u}_k + \boldsymbol{w}_k,$	(1)
$\mathbf{y}_k = \mathbf{C}\mathbf{s}_k + \mathbf{v}_k,$	(2)

Sk	$\in \mathbb{R}^n$	 non-measurable state
$\boldsymbol{\theta}_k$	$\in \mathbb{R}^p$	 unknown parameters
\boldsymbol{u}_k	$\in \mathbb{R}^{r}$	 control
\boldsymbol{y}_k	$\in \mathbb{R}^{m}$	 measurement

- ✓ The elements of matrices $A(\theta_k)$ and $B(\theta_k)$ are known linear function of the unknown parameters θ_k .
- ✓ The random quantities s_0 , θ_0 , w_k , ϵ_k and v_k are described by known pdf's and are mutually independent.

Formulation of the optimization problem

Optimization problem

General optimization problem

The aim is to find control law

$$u_k = u_k(\Im_k) = u_k(u_0^{k-1}, y_0^k), \qquad k = 0, 1, \dots, N-1$$

that minimizes the following criterion

$$J = E \left\{ \sum_{k=0}^{N-1} (s_{k+1} - \bar{s}_{k+1})^T \boldsymbol{Q}_{k+1} (s_{k+1} - \bar{s}_{k+1}) + \boldsymbol{u}_k^T \boldsymbol{R}_k \boldsymbol{u}_k \right\}$$

subject to the system (1)-(2).

Solvability of the optimization problem

- > general solution given by Bellman optimization recursion
- analytically unsolvable (due to inherent nonlinearities)
- ➤ it is necessary to use some approximation

Formulation of the optimization problem

Simple approximate solutions of the optimization problem

Possible approximation choices

 \succ Enforced certainty equivalence \rightarrow leads to HCE controller

$$p_k^{CE} = \left\{ p(\mathbf{s}_{k+i}, \boldsymbol{\theta}_{k+i} | \mathbf{I}_{k+i}) \simeq \delta(\mathbf{s}_{k+i} - \hat{\mathbf{s}}_{k+i}) \delta(\boldsymbol{\theta}_{k+i} - \hat{\boldsymbol{\theta}}_{k+i|k}); \\ i = 0, \dots, N-k- \right\}$$

$$\rho_{k} = \left\{ p(\boldsymbol{s}_{k+i}, \boldsymbol{\theta}_{k+i} | \boldsymbol{I}_{k+i}) \simeq \delta(\boldsymbol{s}_{k+i} - \hat{\boldsymbol{s}}_{k+i}) p(\boldsymbol{\theta}_{k+i} | \boldsymbol{\Im}_{k}); \\ i = 0, \dots, N-k-1 \right\}$$
(3)

Features of the optimization problem employing PCE approximation

Control law sought as to minimize the criterion

$$J = E_{\rho_0} \left\{ \sum_{k=0}^{N-1} \mathcal{L}_k(\boldsymbol{s}_k, \boldsymbol{\theta}_k, \boldsymbol{u}_k) \right\}$$

- > the expectations determined using ρ approximation (3)
- ➤ the control law is suboptimal with respect to original formulation
- > not strictly using the *closed-loop* information processing strategy anymore
- > The resulting controller is of cautious type, i.e. it **isn't** dual controller!

Formulation of the optimization problem

Reformulation of the optimization problem

Reformulated optimization problem employing PCE approximation

Control law sought as

$$\boldsymbol{u}_k = \operatorname*{argmin}_{\boldsymbol{u}_k} J_k(\boldsymbol{\mathfrak{I}}_k), \qquad k = 0, 1, \dots, N-1$$

with receding horizon type of the cost-to-go

$$J_{k}(\mathfrak{I}_{k}) = E_{\rho_{k}} \left\{ \sum_{i=k}^{k+m} \mathcal{L}_{i}(s_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{u}_{i}) \middle| \mathfrak{I}_{k} \right\}$$

Modification of the cost function based on IDC

$$\mathcal{L}_{i}(\cdot) = (\mathbf{s}_{i+1} - \bar{\mathbf{s}}_{i+1})^{T} \mathbf{Q}_{i+1} (\mathbf{s}_{i+1} - \bar{\mathbf{s}}_{i+1}) + \mathbf{u}_{i}^{T} \mathbf{R}_{i} \mathbf{u}_{i} - \mathbf{v}_{i+1}^{T} \mathbf{\Lambda}_{i+1} \mathbf{v}_{i+1}$$

where $\mathbf{v}_{i+1} = \mathbf{y}_{i+1} - \hat{\mathbf{y}}_{i+1|i} \left(\hat{\mathbf{s}}_{i}, \hat{\mathbf{\theta}}_{i}\right)$ with $\hat{\mathbf{y}}_{i+1|i} \stackrel{\Delta}{=} E_{\rho_{k}} \left\{ \mathbf{y}_{i+1} \middle| \widetilde{\mathbf{y}}_{i} \right\}$

 \checkmark simple cost function modification with clear interpretation

- \checkmark the quality of estimates rated using innovations sequence
- ✓ still analytically solvable using PCE

Goal of the paper

Non-myopic Innovations Dual Controller

Conclusion

Formulation of the optimization problem

Analysis of the cost function

Rearranged cost function

$$\mathcal{L}_{i}(\boldsymbol{s}_{i},\boldsymbol{\theta}_{i},\boldsymbol{u}_{i}) = \left(\hat{\boldsymbol{s}}_{i+1|i} - \bar{\boldsymbol{s}}_{i+1}\right)^{T} \boldsymbol{Q}_{i+1} \left(\hat{\boldsymbol{s}}_{i+1|i} - \bar{\boldsymbol{s}}_{i+1}\right) + \boldsymbol{u}_{i}^{T} \boldsymbol{R}_{i} \boldsymbol{u}_{i} \\ + E_{\rho_{k}} \left\{ \left(\boldsymbol{s}_{i+1} - \hat{\boldsymbol{s}}_{i+1|i}\right)^{T} \left(\boldsymbol{Q}_{i+1} - \boldsymbol{\Lambda}_{i+1}\right) \left(\boldsymbol{s}_{i+1} - \hat{\boldsymbol{s}}_{i+1|i}\right) \middle| \boldsymbol{\Im}_{i} \right\}$$

Decomposition of the cost function

$$\mathcal{L}_k = \mathcal{L}_k^{\mathcal{C}} + \mathcal{L}_k^{\mathcal{P}}$$

• Cautious part (it's equivalent to the original quadratic cost function) $\mathcal{L}_{k}^{\mathcal{C}} = (\hat{s}_{i+1|i} - \bar{s}_{i+1})^{T} \mathcal{Q}_{i+1} (\hat{s}_{i+1|i} - \bar{s}_{i+1}) + \boldsymbol{u}_{i}^{T} \boldsymbol{R}_{i} \boldsymbol{u}_{i} + E_{\rho_{k}} \left\{ (s_{i+1} - \hat{s}_{i+1|i})^{T} \mathcal{Q}_{i+1} (s_{i+1} - \hat{s}_{i+1|i}) \left| \Im_{k} \right\} \right\}$ • Probing part

$$\mathcal{L}_{k}^{\mathcal{P}} = -E_{\rho_{k}}\left\{\left(\mathbf{s}_{i+1} - \hat{\mathbf{s}}_{i+1|i}\right)^{T} \mathbf{\Lambda}_{i+1}\left(\mathbf{s}_{i+1} - \hat{\mathbf{s}}_{i+1|i}\right) \left|\mathfrak{I}_{k}\right\}\right\}$$

 \Rightarrow it comprises both aspect of the dual control

ALCOSP 2010

Goal of the paper

Non-myopic Innovations Dual Controller

Conclusion

Solution of the optimization problem

The solution of the modified optimization problem

Bellman optimization recursion (for receding horizon type of problem)

The recursion at time instant k is defined as

$$\mathcal{V}_{j} = \min_{\boldsymbol{u}_{i}} \left\{ E_{\rho_{k}} \left\{ \mathcal{L}_{i}(\boldsymbol{s}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{u}_{i}) + \mathcal{V}_{j+1} \middle| \mathfrak{I}_{i} \right\} \right\},\$$

$$j = m, ..., 0; \ i = k + j$$

with boundary condition $\mathcal{V}_{m+1} = \mathcal{O}$.

The form of the Bellman function

$$\mathcal{V}_{j} = \hat{s}_{i}^{T} \mathbf{\Pi}_{m-j+1} \hat{s}_{i} + \hat{s}_{i}^{T} F_{m-j+1} + F_{m-j+1}^{T} \hat{s}_{i} + h_{m-j+1},$$

where $\Pi_{m-j+1} \in \mathbb{R}^{n \times n}$, $F_{m-j+1} \in \mathbb{R}^n$ and $h_{m-j+1} \in \mathbb{R}$ and Π_0 , F_0 and h_0 are zero valued (follows from the boundary condition).

Solution of the optimization problem

The dual control law

The dual control law

$$\boldsymbol{u}_{k} = -\left[\boldsymbol{R}_{k} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k|k}) \overline{\boldsymbol{Q}}_{k+1} \boldsymbol{B}(\hat{\boldsymbol{\theta}}_{k|k}) + \boldsymbol{P}_{k|k}^{BB} \right]^{-1} \times \left[\boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k|k}) \overline{\boldsymbol{Q}}_{k+1} \boldsymbol{A}(\hat{\boldsymbol{\theta}}_{k|k}) \hat{\boldsymbol{s}}_{k} + \boldsymbol{P}_{k|k}^{BA} \hat{\boldsymbol{s}}_{k} - \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k|k}) \boldsymbol{C}_{k+1}^{T} \boldsymbol{Q}_{k+1} \overline{\boldsymbol{s}}_{k+1} + \boldsymbol{B}^{T}(\hat{\boldsymbol{\theta}}_{k|k}) \boldsymbol{F}_{m-1} \right]$$

where $\overline{\boldsymbol{Q}}_{k+1} = (\boldsymbol{Q}_{k+1} + \boldsymbol{\Pi}_{m-1})$

Properties of the dual control law

- > The control law is derived using the Bellman optimization recursion.
- > The dual properties manifested through $P_{i|k}^{AA}$ (occurring in Bellman function), $P_{i|k}^{BA}$ and $P_{i|k}^{BB}$ which depend on $P_{i|k}^{\theta} = \operatorname{cov}_{\rho_k}(\theta_i | \mathfrak{I}_k)$ for i = k, ..., k + m.

> Only the mean value \hat{s}_k and first two moments of pdf's $p(\theta_i | \Im_k)$ $i = k, \dots, k + m$ are necessary.

Numerical example

Numerical example

Considered system

$$s_{k+1} = \begin{pmatrix} 0 & 1 \\ \theta_1 & \theta_2 \end{pmatrix} s_k + \begin{pmatrix} 0 \\ \theta_{3k} \end{pmatrix} u_k + \boldsymbol{w}_k$$
$$y_k = (0 \ 1) s_k + v_k$$

• Initial state and the real parameters

$$\Rightarrow s_0 = (1, -0.5)^T$$

$$\Rightarrow \boldsymbol{\theta}_k = (-2.0427, \ 0.3427, \ 1)^T, \quad \forall k$$

- Noise pdf's
 - $\Rightarrow p(\boldsymbol{w}_k) = \mathcal{N}(0, 0.0001)$
 - $\Rightarrow p(v_k) = \mathcal{N}(0, 0.001)$
- Prior pdf for EKF

$$\Rightarrow p(s_0, \theta_0) = \mathcal{N}((1, -0.5, -2.0427, 0.3427, 1)^T, 0.2\mathbf{I})$$

Numerical example

Criteria parameters

Criterion of the original optimization problem

$$J = E \left\{ \sum_{k=0}^{N-1} (s_{k+1,2} - 5)^2 + 0.001 \cdot u_k^2 \right\},\$$

Modified criterion for dual control derivation

$$J_{k} = E_{\rho_{k}} \left\{ \sum_{i=k}^{k+m} (s_{i+1,2} - 5)^{2} + 0.001 \cdot u_{i}^{2} - 0.8485 \cdot v_{i+1}^{2} \middle| \Im_{i} \right\},$$

$$k = 0, 1, \dots, N-1$$

$$m = 4 \quad Q_{k} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad R_{k} = 0.001 \quad \Lambda_{k} = 0.8485$$

Notes:

- $\Rightarrow \Lambda_k = 0$ in case of the the cautious controller (PCE)
- \Rightarrow the HCE controller can be obtained employing the ρ_k^{CE} -approximation and setting $\Lambda_k = Q_k$

Numerical example

Control quality comparison with non-dual controllers

Controller	\hat{J}	$\operatorname{var}\{\hat{J}\}$	$\sigma\{J\}$
HCE	108.768219	447.416351	1396.308509
Cautious (PCE)	5.026459	0.040193	13.453065
Dual	4.206371	0.052889	15.549870

• estimate of the original criterion value

$$\hat{J} = \frac{1}{M} \sum_{j=1}^{M} J_i$$
, where $J_i = \sum_{k=0}^{N-1} \mathcal{L}_i(s_i, \theta_i, u_i)$

- variance of the criterion value estimate var{Ĵ} (determined using the bootstrap technique)
- standard deviation among the Monte Carlo runs

$$\sigma\{J\} = \sqrt{\frac{1}{M-1}\sum_{j=1}^{M}J_i - \hat{J}}$$

Concluding remarks

Resume

- non-myopic version of innovations dual adaptive controller was introduced
- > some aspects of the criterion and control law were discussed

Features of the new dual controller

- ✓ clear criterion interpretation
 - modified criterion incorporates both aspects of dual control
 - \Rightarrow makes it possible to tune the balance between caution and probing
- ✓ closed form solution available
- ✓ higher control quality compared to HCE and PCE controllers
- ✓ computationally moderate

Receding horizon length

 $\Lambda_k \in <0, 1 > \qquad \Lambda_k \in <0.75, 0.95 >$ Note: The non-myopic controllers (i.e. $m \ge 1$) use the control energy more wisely.

Miroslav Flídr and Miroslav Šimandl

ALCOSP 2010