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Abstract: The paper deals with an active change detection problem in a stochastic discrete-
time linear multiple model framework. An active detector decides on changes in an ob-
served system and also generates an auxiliary input signal that should improve change
detection. Design of the optimal active detector is formulated as minimization of an ap-
propriate criterion. The general solution is obtained using Bellman’s principle of optimal-
ity. The main contribution of the paper is an analysis of active change detection in case of
two scalar models and detection horizon of two steps. It is shown that the auxiliary input
signal can improve change detection only if two models differ in certain parameters.
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1. INTRODUCTION

A change detection problem arises in many practical applications, ranging from the time series
analysis to the fault detection in industrial processes. Its importance is still growing and the
availability of faster computers allows to use advanced approaches to detector design.

In general, the aim is to design a detector that provides information about changes in the ob-
served system. There are many design approaches, but stress will be laid on the model-based
approach, where detector design is based on a given model of the observed system. Detectors
can be divided on passive and active detectors. Passive detectors use measurements to decide
on changes without influencing the observed system. More advanced detectors are called active
because they generate an auxiliary input that improves change detection.

The observed system is usually described by a multiple model in known approaches to the
active change detection problem. Stochastic discrete-time linear Gaussian models and the se-
quential probability ratio test (SPRT) are considered in (Zhang, 1989). Firstly, only two models
are considered and the SPRT is used to detect a change. The auxiliary input signal is designed
to optimize a selected property of the SPRT, namely the average sampling number (ASN) and
the probability of a wrong decision. In the case of more than two models the SPRT must be
modified (extended SPRT) to accommodate such situation. The extended SPRT is not optimal
and design of the auxiliary input signal is based on minimization of the weighted sum of the
criteria, where the weights are given by belief that the observed system will behave according
to particular model after the change. This leads to the auxiliary input signal that can increase
the probability of a wrong decision.



Another approach uses a deterministic multiple model and disturbances are modelled as signals
bounded in their amplitude or energy (Nikoukhah, 1998). It is considered that system behavior
does not change during a test period and the membership approach is used to determine the
valid model. The aim is to find the auxiliary input signal that allows to surely determine the
valid model at time of the test period. If such auxiliary input signal exist then the detector
provides exact information about current behavior of the observed system. Unfortunately, it is
not possible to guarantee that system behavior does not change during the test period.

In (Kerestecioğlu, 1993) an attempt to provide more general active change detection formu-
lation was presented. The active detector was designed by minimization of a criterion that
penalizes a terminal decision and the cost of all measurements needed to take this decision.
The similar idea was also presented in (Šimandl and Herejt, 2003). A solution for the case,
where the auxiliary input signal depends on the decision was elaborated deeply using three in-
formation processing strategies (IPS’s), namely open loop, open loop feedback and closed loop
strategy. The solutions obtained using these three IPS were related to solutions obtained using
approaches that are well-known in change detection field. Further extensions of the idea are
summarized in (Šimandl and Punčochář, 2006).

This paper presents an analysis of the active change detection problem. The goal is to discuss
the influence of the auxiliary input signal on change detection in dependence on the difference
between models. Only two scalar Gaussian models are considered in this analysis because a
general analysis would be too difficult to perform. Firstly, the change detection problem for this
special case is formulated and the solution for the detection horizon F = 1 is presented. A state
estimation problem is briefly mentioned and then the analysis is provided. The improvement
in change detection depends on the amplitude of the auxiliary input signal and the differences
between corresponding parameters of two models. It is shown that some parameter differences
are important and if these differences are zeros than the auxiliary input signal can not lead to
better decisions.

The paper is organized as follows. Section 2 is devoted to the formulation of the active change
detection problem. The observed system, the general form of the active detector and an additive
criterion are described. The general solution based on the dynamic programming and a brief
description of the state estimation problem are presented in Section 3. Section 4 is focused on
the analysis of the active change detection. The last Section 5 provides a conclusion.

2. PROBLEM FORMULATION

The change detection problem is considered on the finite detection horizon F and the observed
system is described at each time step k ∈ T = {0, 1, . . . , F} by the linear Gaussian model in
the state space form

xk+1 = A (µk)xk + B (µk)uk + G (µk)wk,

yk = C (µk)xk + H (µk)vk, (1)

where xk ∈ Rnx is the immeasurable state of the system, uk ∈ Uk ⊆ Rnu and yk ∈ Rny denote
input and output of the system, respectively. The noises wk ∈ Rnw and vk ∈ Rnv are mutually
independent white Gaussian sequences with zero-mean and identity covariance matrices. The
initial condition of the state x0 is independent of the noises and it has also Gaussian probability
density function (pdf) with mean value x′0 and covariance matrix P ′

x,0. The scalar discrete
immeasurable variable µk ∈ M = {1, . . . , N} denotes the model, which is valid at time step



k. The set M is given in advance and the known matrices A (µk), B (µk), C (µk), G (µk) and
H (µk) have appropriate dimensions. The switching between models is described by transition
probabilities Pi,j = P (µk+1 = j|µk = i) and initial condition of the model is given by the
known probability P (µ0).

The aim of active detection is to determine the true model and the auxiliary input signal at
each time step. The active detector should be a causal system. It means that the active detector
can use only information obtained up to the current time step. The general form of the active
detector for each time step k ∈ T is the following

[
dk

uk

]
= ρk

(
Ik
0

)
, (2)

where ρk is unknown vector function describing the active detector. The decision dk ∈M is a
point estimate of the variable µk and all available information received up to the time step k is

denoted Ik
0 =

[
yk

0
T
,uk−1

0

T
, dk−1

0

T
]T

. Note that the time sequence of a variable from time step

i to time step j, where i, j ∈ T , i < j is denoted as yj
i =

[
yT

i , . . . ,yT
j

]T .

The active detector should make as less as possible wrong decisions. This request is expressed
by the additive criterion over whole detection horizon F

J(ρF
0 ) = E

{
F∑

k=0

L (dk, µk)

}
→ min, (3)

where E {·} is expectation operator and L (dk, µk) is a cost function satisfying

∀i, j ∈M : L (i, i) < L (i, j) . (4)

The cost function is chosen by the designer and it should respect real costs connected with
wrong decisions. If these costs are known exactly, then proposed design provides the active
detector that minimizes average costs over whole detection horizon. It should be noted that
this formulation of the active change detection problem is very similar to the formulation of the
optimal stochastic control.

3. ACTIVE DETECTOR DESIGN

The goal is to find the active detector (2) minimizing the additive criterion (3) given the con-
straints (1). The solution can be obtained using Bellman’s principle of optimality, which leads
to the well-known dynamic programming. The general backward recursive equation for time
steps k = F, F − 1, . . . , 0 is

V ∗
k

(
Ik
0

)
= min

dk∈M
uk∈Uk

E
{
L (dk, µk) + V ∗

k+1

(
Ik+1
0

) |Ik
0,uk, dk

}
, (5)

where E {·|·} is the conditional expectation operator and the Bellman function V ∗
k

(
Ik
0

)
repre-

sents the minimum of the conditional mean value of the current and future costs. The initial
condition for backward recursive equation is V ∗

F+1 = 0 and the value of the criterion can be
expressed as J∗ = J

(
ρF

0
∗)

= E {V ∗
0 (I0)}.

It is obvious that the conditional probability P
(
µk|Ik

0,uk, dk

)
and the pdf p

(
yk+1|Ik

0,uk, dk

)
are needed to evaluate the recursive equation (5) at each time step k. Using properties of the



system (1) it is possible to write the following identities

P
(
µk|Ik

0,uk, dk

)
= P

(
µk|yk

0 ,u
k−1
0

)
,

p
(
yk+1|Ik

0,uk, dk

)
= p

(
yk+1|yk

0 ,u
k
0

)
. (6)

Then the recursive equation (5) can be modified in the following way. Firstly, using identi-
ties (6) it can be easily shown that the Bellman function satisfies V ∗

k

(
Ik
0

)
= V ∗

k

(
yk

0 ,u
k−1
0

)
,∀k ∈

T . Further, the conditional mean value of the cost function L(dk, µk) is independent of the input
signal uk and the conditional mean value of the Bellman function Vk+1(y

k+1
0 ,uk

0) is indepen-
dent of the decision dk. Now, it is obvious that the backward recursive equation (5) can be
rewritten as

V ∗
k

(
yk

0 ,u
k−1
0

)
= min

dk∈M
E

{
L (dk, µk) |yk

0 ,u
k−1
0 , dk

}
+

min
uk∈Uk

E
{
V ∗

k+1

(
yk+1

0 ,uk
0

) |yk
0 ,u

k
0

}
. (7)

The optimal decision d∗k and the optimal auxiliary input signal u∗k are

d∗k = arg min
dk∈M

E
{
L (dk, µk) |yk

0 ,u
k−1
0 , dk

}
, (8)

u∗k = arg min
uk∈Uk

E
{
V ∗

k+1

(
yk+1

0 ,uk
0

) |yk
0 ,u

k
0

}
. (9)

Hence, the active detector consists of two independent parts, the optimal detector and the opti-
mal input signal generator.

The state estimation and output prediction problem will be briefly discussed. The conditional
probability P

(
µk|yk

0 ,u
k−1
0

)
can be expressed as

P
(
µk|yk

0 ,u
k−1
0

)
=

∑
µ0

. . .
∑
µk−1

P
(
µk

0|yk
0 ,u

k−1
0

)
=

∑

µk−1
0

P
(
µk

0|yk
0 ,u

k−1
0

)
, (10)

where µk
0 is the model sequence and its conditional probability can be recursively computed

using the equation

P
(
µk

0|yk
0 ,u

k−1
0

)
=

p
(
yk|yk−1

0 ,uk−1
0 , µk

0

)
P (µk|µk−1) P

(
µk−1

0 |yk−1
0 ,uk−2

0

)

p
(
yk|yk−1

0 ,uk−1
0

) . (11)

The pdf p
(
yk|yk−1

0 ,uk−1
0

)
is only normalization constant independent of the model sequence

and the probability P
(
µk−1

0 |yk−1
0 ,uk−2

0

)
is known from previous time step. The predictive pdf

p
(
yk+1

0 |yk
0 ,u

k
0

)
can be written as

p
(
yk+1

0 |yk
0 ,u

k
0

)
=

∑

µk+1
0

p
(
yk+1|yk

0 ,u
k
0, µ

k+1
0

)
P (µk+1|µk) P

(
µk

0|yk
0 ,u

k−1
0

)
. (12)

In general, the predictive pdf’s p
(
yk|yk−1

0 ,uk−1
0 , µk

0

)
have to be known to evaluate the equa-

tions (11) and (12). These predictive pdf’s can be computed easily, because given the model
sequence µk+1

0 it is possible to use standard Kalman filter to find the predictive pdf of the output
yk+1 and the pdf of the state xk at each time step k. The number of needed Kalman filters grows
exponentially with time according to Nk+1, but this issue will not be discussed in this article.
There are some approaches dealing with this problem, see e.g. (Boers and Driessen, 2005) for
more information and references.



4. ANALYSIS OF ACTIVE DETECTION FOR TWO SCALAR MODELS

The general analysis of the active change detection problem would be too complex. Therefore,
the case of two scalar models and the detection horizon F = 1 is analyzed. At each time step
k ∈ T = {0, 1} the system is described by one of the following model

µk = 1 : xk+1 = a(1)xk + b(1)uk + g(1)wk

yk = c(1)xk + h(1)vk (13)
µk = 2 : xk+1 = a(2)xk + b(2)uk + g(2)wk

yk = c(2)xk + h(2)vk (14)

The cost function is chosen in the following form

L (dk, µk) = 0 ⇐⇒ µk = dk,

L (dk, µk) = 1 ⇐⇒ µk 6= dk. (15)

This cost function leads to the decision dk that is the point estimate of the variables µk in the
maximum a posteriori probability sense.

Firstly, the backward recursive equation will be presented. Considering the initial condition
V ∗

2 = 0 the Bellman function at time step k = 1 is

V ∗
1

(
y1

0, u0

)
= min

d1∈M

∑
µ1

L (d1, µ1) P
(
µ1|y1

0, u0

)
=

min
[
P

(
µ1 = 1|y1

0, u0

)
, P

(
µ1 = 2|y1

0, u0

)]
, (16)

where the function min[·, ·] returns the minimum value of two input arguments. The optimal
decision d∗1 is exactly given by the minimization, but the optimal input signal u∗1 is not deter-
mined. This is caused by the fact that the input signal u1 can not influence the output of the
system on the considered detection horizon. Thus, the input u1 can take an arbitrary value from
the subset U1. The Bellman function at time step k = 0 is

V ∗
0 (y0) = min

d0∈M

∑
µ0

L (d0, µ0) P (µ0|y0) +

min
u0∈U0

∫
V ∗

1

(
y1

0, u0

)
p (y1|y0, u0) dy1. (17)

In this case, both the optimal decision d∗0 and optimal input signal u∗0 are determined as argu-
ments of corresponding minimizations.

The question is how the input signal u0 influences the value of the criterion J or equivalently the
conditional mean value of the Bellman function V ∗

1 (y1
0, u0). By subsequent substitution (16),

(10) and (11) into (17) and after cancellation out common terms the second term of the sum
in (17) can be written as

min
u0∈U0

∫
min

[∑
µ0∈M

p (y1|y0, u0, µ0, µ1 = 1) P (µ1 = 1|µ0) P (µ0|y0) ,

∑
µ0∈M

p (y1|y0, u0, µ0, µ1 = 2) P (µ1 = 2|µ0) P (µ0|y0)

]
dy1. (18)



Given the fixed input u0 the both arguments of inner minimization in the above expression
are two terms weighted Gaussian sums with respect to the variable y1. Considering standard
Kalman filter it is obvious that the input signal u0 influences only mean values of the pdf’s
p (y1|y0, u0, µ

1
0) = N{mµ0,µ1 , Cµ0,µ1}, µ1

0 ∈ M × M. The relations for computing these
mean values are given in Table 1, where the columns corresponds to the Gaussian sums and
x̂0(1), x̂0(2) are the state estimates obtained from Kalman filter for situations µ0 = 1 and
µ0 = 2, respectively. Considering the expression (18) it is clear that the optimal input signal

Table 1: Mean values of the predictive pdf’s p
(
y1|y0, u0, µ

1
0

)

µ1 = 1 µ1 = 2
µ0 = 1 m1,1 =c(1)a(1)x̂0(1)+c(1)b(1)u0 m1,2 =c(2)a(1)x̂0(1)+c(2)b(1)u0

µ0 = 2 m2,1 =c(1)a(2)x̂0(2)+c(1)b(2)u0 m2,2 =c(2)a(2)x̂0(2)+c(2)b(2)u0

u∗0 minimizes an area under function that is given as minimum of the Gaussian sums, see
Figure 1. This area is determined by overlap between the Gaussian sums. It leads to the
general conclusion that the optimal input signal u∗0 moves the Gaussian sums apart as much
as possible. The important question is how the differences between parameters of the models
influence the active change detection. In the following four cases only the relevant parameters
will be considered and conclusions are based directly on expressions in Table 1.

• The parameters of the models satisfy a(1) = a(2), b(1) = b(2), c(1) = c(2). All
differences between mean values m1,1, m1,2, m2,1 and m2,2 are independent of input
signal u0. Thus, the input signal can not improve change detection.

• The parameters of the models satisfy a(1) 6= a(2), b(1) = b(2), c(1) = c(2). Again,
the input signal can not improve change detection because the differences between mean
values are not functions of the input signal. If a longer detection horizon is considered
then input signal can improve change detection.

• The parameters of the models satisfy a(1) = a(2), b(1) 6= b(2), c(1) = c(2). The
differences m1,1 −m1,2 and m2,1 −m2,2 are zero. It means that mean values of the first
Gaussian sum are the same as mean values of the second Gaussian sum. There are two
subcases.

– It holds that h(1) = h(2) andP (µ1 = i|µ0) = P (µ1 = j|µ0)∀i, j, µ0 ∈M : i 6= j.
In this case the both Gaussian sums are exactly the same functions of the output y1

and the input signal u0. Hence the overlap is whole Gaussian sum and this overlap
does not change in dependence on the input signal. Hence input signal can not
improve change detection.

– In other cases the input signal can improve change detection because of differences
between Gaussian sums. If the input signal tends to infinity then the distance be-
tween mean values of the first and second Gaussian sum tends to infinity. However,
the overlap of Gaussian sums does not tends to the zero but to a value that depends
on the parameters of both models. Thus, even infinity input signal can not guarantee
that the optimal decision d∗1 will be almost surely right.

• The parameters of the models satisfy a(1) = a(2), b(1) = b(2), c(1) 6= c(2). The
shape of both Gaussian sums is independent of the input signal but their relative position
depends on the input signal. Hence, the input signal can improve change detection. If
the infinity input signal is used then the overlap between Gaussian sums tends to zero. It
means that the optimal decision d∗1 will be almost surely right.



Fig. 1: Gaussian sums: (..) Gaussian sum for µ1 = 1, (.-) Gaussian sum for µ1 = 2, (–) minimum of the
Gaussian sums
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5. CONCLUSION

The paper deals with the analysis of the active detector behavior in the case of two scalar linear
Gaussian models and detection horizon of two steps. It was shown that active detection is
advantageous only if the models differ in the parameter b or c. For longer detection horizon the
active change detection can be also advantageous when the models differ only in the parameter
a. Further, it is obvious that the statistical properties of the noises are not important from this
point of view. An extension of this analysis to multidimensional system is not straightforward.
The following two aspects have to be taken into account: infinite number of equivalent state
space representations and a delay longer than one time step. Therefore, this case and the case
with more then two models should be addressed in the future.
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