
Smoothing in Multiple Model Change
Detection for Stochastic Systems
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Introduction

Change detection problem

Introduction

Change detection problem

System Detector
Measurements Decisions

The primary task – recognize a change in an observed system
as quick and reliable as possible

Performance measures – the delay for detection, quality of
detection, robustness with respect to disturbances, . . .

Application areas – automatic control, signal processing, fault
detection, . . .
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A tradeoff between the delay for detection and
the quality of decisions
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Introduction

The delay for detection vs. the quality of decisions

An example of a detector based on a statistical test
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A change occurred at the time step k = 100.
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Introduction

Multiple model change detection

Introduction – cont’d

Multiple model change detection approach

Use of the multiple model approach for system description

Suitable for systems that may undergo abrupt changes and
individual models are known (used e.g. in fault detection,
state estimation, target tracking)

Decisions are typically based on filtering estimates of the state
(i.e. p(xk |zk

0))

Deferred decisions

In a specific application it is possible to defer decisions, obtain
more measurements and use smoothing estimates (i.e.
p(xk−`|zk

0))
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Introduction

Multiple model change detection - example

Introduction – cont’d

A motivational example – a production line

The decisions about past changes can be used to react to these
changes. Other examples: pipelines, car engines, . . .
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Introduction

Goals

Introduction – cont’d

Goals

Formulate the problem of change detection with delayed
decisions in the multiple model framework

Design the optimal detector, that utilizes smoothing
estimates, using the closed loop information processing
strategy

Present the smoothing algorithm used in the designed optimal
detector

Note: The change detection problem with deferred decisions has
not been considered in the literature yet.
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Problem Formulation

Problem formulation

Description of the system at time steps k ∈ T = {0, 1, . . . ,F}

xk+1 =Aµk
xk + Gµk

wk

zk =Cµk
xk + Hµk

vk

zk ∈ Rnz – measurements, x̄T
k = [xT

k , µk ] – system state,
xk ∈ Rnx – common continuous state,
µk ∈M = {1, 2, . . . ,N} – a scalar index into the set of models
P(µk+1 = j |µk = i) = πij – transition probabilities
wk , vk – noises with standard Gaussian distribution N{0,E}
x0 – initial state with Gaussian distribution N{x0|−1,P0|−1}
µ0 – initial model with probabilities P(µ0)
Aµk

, Gµk
, Cµk

, and Hµk
– given matrices

ACD 2010 8 / 22



Smoothing in Multiple Model Change Detection for Stochastic Systems

Problem Formulation

Problem formulation – cont’d

Description of the optimal detector at time steps k ∈ T

S D
zk dk

D: dk = σk

(
Ik0

)
dk – a decision at the time step k ,
σk(Ik0) – an unknown function that describes the detector

Ik0 =
[
zk
0 , d

k−1
0

]
– all available information at the time step k
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Problem Formulation

Problem formulation – cont’d

A criterion for non-delayed decisions

J
(
σF

0

)
= E

{
F∑

k=0

Ld
k (µk , dk)

}

Ld
k(µk , dk) – a cost function that assesses the decision dk with

respect to the current model µk

Šimandl, M. and Punčochá̌r, I. (2009)

Active fault detection and control: Unified formulation and optimal
design. Automatica, 45(9), 2052–2059.
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Problem Formulation

Problem formulation – cont’d

A criterion for decisions delayed by ` ≥ 0 steps

J
(
σF
`

)
= E

{
F∑

k=`

Ld
k (µk−`, dk)

}

Ld
k(µk−`, dk) – a cost function that assesses the decision dk with

respect to the past model µk−`
Note: The detector is not defined at the time steps 0 to `− 1.

An example of the function Ld
k(µk−`, dk)

Ld
k(µk−`, dk) =

{
0 if dk = µk−`

1 otherwise
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Optimal Detector Design

Three fundamental information processing strategies

Optimal detector design – cont’d

Three fundamental information processing strategies

Open Loop (OL) – Only an a priori information is used.

Open Loop Feedback (OLF) – An a priori information and
measurements received up to the current time step
are used. No further measurements will be received
in the future.

Closed Loop (CL) – An a priori information and measurements
received up to the current time step are used.
Further measurements will be received and utilized in
the future.

JOL ≥ JOLF ≥ JCL
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Optimal Detector Design

Optimal detector law

Optimal detector design – cont’d

Backward recursive equation k = F ,F − 1, . . . , 0

V ∗k

(
zk
0

)
= min

dk∈M
E
{

Ld
k (µk−`, dk) + V ∗k+1

(
zk+1
0

) ∣∣ zk
0 , dk

}
︸ ︷︷ ︸

d∗k =arg mindk∈M

V ∗k (zk
0) – the cost-to-go (Bellman) function

V ∗F+1 = 0 – the initial condition

JCL = J(σF∗
` ) = E{V ∗0 (z0)}
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Optimal Detector Design

Optimal detector law

Optimal detector design – cont’d

Optimal detector law

d∗k = σ∗k

(
zk
0

)
= arg min

dk∈M
E
{

Ld
k (µk−`, dk)

∣∣ zk
0 , dk

}

It is not necessary to compute the cost-to-go function V ∗k (zk
0)

because the decision dk does not influence the future costs

The smoothing probability P(µk−`|zk
0) is needed for

evaluation the conditional expectation E{·|·}
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Filtering and smoothing algorithms

Filtering and smoothing algorithms

Filtering algorithm

The aim is to compute the probability P(µk |zk
0) and the pdf

p(xk |zk
0)

Given the model sequences µk
0 the Kalman filters are used to

compute the pdfs p(xk |zk
0 , µ

k
0)

Then filtering probability is given as
P(µk |zk

0) =
∑

µk−1
0

P(µk
0 |zk

0), where

P(µk
0 |zk

0) =
p
(

zk |zk−1
0 , µk

0

)
P (µk |µk−1) P

(
µk−1

0 |zk−1
0

)
p
(

zk |zk−1
0

)
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Filtering and smoothing algorithms

Filtering and smoothing algorithms – cont’d

Smoothing algorithm

The aim is to compute the probability P(µk−`|zk
0) and

optionally the pdf p(xk−`|zk
0) for ` > 0

Given the model sequences µk
0 the Rauch-Tung-Striebel

smoothers are used to obtain the pdfs p(xk−`|zk
0 , µ

k
0)

The smoothing probability P(µk−`|zk
0) can directly be

computed by marginalization as

P(µk−`|zk
0) =

∑
µk−`−1

0 ,µk
k−`+1

P(µk
0 |zk

0)
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Filtering and smoothing algorithms

Filtering and smoothing algorithms – cont’d

Notes on estimation algorithms

The number of sequences increases according to Nk+1

Merging with depth h ≥ ` based on the moment matching
technique is used to limit computational demands

P
(
µk

k−h|zk
0

)
=

∑
µk−h−1

0

P
(
µk

0 |zk
0

)
p
(

xk |zk
0 , µ

k
k−h

)
=

∑
µk−h−1

0

P
(
µk−h−1

0 |zk
0 , µ

k
k−h

)
× p

(
xk |zk

0 , µ
k
0

)
≈ N{x̃, P̃}
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Numerical example

Example definition

A second order system described by two models

A1 =

[
0.9 1
0 0.9

]
, A2 =

[
0.8 1
0 0.9

]
,

G1 = 0.01E2, G2 = 0.1E2,
C1 = C2 = [1 0], H1 = H2 = 0.01

Horizon F = 40

Initial condition x0|−1 = [1 0]T , P0|−1 = 0.1E2

Initial probabilities P(µ0 = 1) = P(µ0 = 2) = 0.5

Transition probabilities π1,1 = π2,2 = 0.95

The cost function Ld
k(µk−`, dk) = Ld1

k (µk−`, dk) + Ld2`

Ld1
k (µk−`, dk) – the zero-one cost function

Ld2 – a constant cost of deferring the decision by one time step
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Numerical example

Scenario 1 - Comparison of filtering and smoothing decisions

Numerical example (Scenario 1)

Comparison of decisions based on filtering and smoothing

Comparison within an individual realization of random process

Chosen parameters

The cost of deferring decision Ld2 = 0.01
The depth for merging h = 3 and the lag ` = 3
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Numerical example

Scenario 1 - Comparison of filtering and smoothing decisions
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Numerical example

Scenario 2 - Dependence of the criterion J on the lag `

Numerical example (Scenario 2)

Dependence of the criterion J on the lag `

The value of the criterion J is evaluated on the interval 0 to
F − `max using 1000 Monte Carlo simulations

The maximum considered lag `max = 5

The depth for merging h = `max

Considered costs of deferring decision by one time step
Ld2 = {0, 0.01, 0.02, . . . , 0.1}
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Numerical example

Scenario 2 - Dependence of the criterion J on the lag `
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Conclusion

Concluding Remarks

Concluding Remarks

The core idea – delay decisions, gather more measurements
and thus improve change detection

An innovative formulation of considered problem was provided
and the new optimal detector with deferred decisions was
derived using closed loop information processing strategy

The approach was applied in change detection with multiple
linear Gaussian models

It was demonstrated that the quality of decisions increases as
the lag increases when cost of deferring the decisions is zero
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