bibtype J - Journal Article
ARLID 0025906
utime 20240903202653.1
mtime 20060120235959.9
title (primary) (eng) Different types of continuity of triangular norms revisited
specification
page_count 17 s.
serial
ARLID cav_un_epca*0420501
ISSN 1793-0057
title New Matematics and Natural Computation
volume_id 1
volume 2 (2005)
page_num 195-211
title (cze) O rôznych typoch spojitosti triangulárnych noriem
keyword triangular norm
keyword Lipschitz property
keyword Schur concavity
keyword stability
author (primary)
ARLID cav_un_auth*0208902
name1 Klement
name2 E.P.
country AT
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021106
name1 Pap
name2 E.
country CS
COSATI 12A
cas_special
project
project_id GA402/04/1026
agency GA ČR
country CZ
ARLID cav_un_auth*0001809
research CEZ:AV0Z10750506
abstract (eng) Different types of continuity of triangular norms are investigated. The types wich are stronger than the usual continuity are analytical properties and, therefore, there are representations of the corresponding triangular norms. This is not the case for the weaker types of continuity (which are topological properties). In these cases, some related analytical properties are discussed, in particular, the Schur concavity.
abstract (cze) Skúmame rôzne typy spojitosti triangulárnych noriem. Typy silnejsie nez klasická spojitosť sú analytickými vlastnosťami, čo umožňuje reprezentovať zodpovedajúce triangulárne normy. Toto sa nedá v prípade slabších typov spojitosti, ktoré sú topologickými vlastnosťami. V takom prípade rozoberáme niektoré analytické vlastnosti, najmä Schurovu konkávnosť.
reportyear 2006
RIV BA
permalink http://hdl.handle.net/11104/0116231
arlyear 2005
mrcbU63 cav_un_epca*0420501 New Matematics and Natural Computation 1793-0057 1793-7027 Roč. 1 č. 2 2005 195 211