bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0026443 |
utime |
20240111140632.1 |
mtime |
20060120235959.9 |
title
(primary) (eng) |
Prior information in Bayesian identification of a linear regression model |
specification |
page_count |
6 s. |
media_type |
CD-ROM |
|
serial |
ARLID |
cav_un_epca*0045456 |
ISBN |
961-6303-74-0 |
title
|
Proceedings of the 6th International PhD Workshop in Systems and Control, Young Generation Viewpoint |
page_num |
1-6 |
publisher |
place |
Ljubljana |
name |
Jozef Stefan Institute |
year |
2005 |
|
editor |
|
editor |
|
|
title
(cze) |
Apriorní informace v bayesovké identifikaci lineárního regresního modelu |
keyword |
fictiticous data |
keyword |
information matrix |
keyword |
Gauss-inverse-Wishart |
keyword |
MCMC |
author
(primary) |
ARLID |
cav_un_auth*0101119 |
name1 |
Jirsa |
name2 |
Ladislav |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0202818 |
name1 |
Varga |
name2 |
F. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0101124 |
name1 |
Kárný |
name2 |
Miroslav |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
COSATI |
12B |
COSATI |
06R |
COSATI |
12C |
cas_special |
project |
project_id |
1ET100750404 |
agency |
GA AV ČR |
country |
CZ |
ARLID |
cav_un_auth*0001793 |
|
project |
project_id |
1M0572 |
agency |
GA MŠk |
country |
CZ |
ARLID |
cav_un_auth*0001814 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
Construction of prior information for Bayes identificationof linear regression model with normal noise and lack of data is presented. The model discrabes accumulation of activity in thyroid gland after administration of 131I to patients with thyroid cancer. One way of prior information is a restriction of parameters support. Second way uses theory of information merging between agents. Prior information improves prediction ability of the model and decreases lower bound for sufficient amount of data. |
abstract
(cze) |
Je ukázána konstrukce apriorní informace pro bayesovskou identifikaci lineárního regresního modelu s normálním šumem a malým počtem dat. Model přestavuje průběh aktivity štítné žlázy po terapeutické aplikaci 131I pacientům s karcinomem štítné žlázy. Pro apriorní informaci je použito omezení definičního oboru parametrů a teorie sdílení znalostí mezi agenty. Apriorní informace zlepšuje predikční schopnost modelu a snižuje dolní hranici pro minimální počet dat, s nimiž lze identifikaci provést. |
action |
ARLID |
cav_un_auth*0213261 |
name |
International PhD Workshop on Systems and Control a Young Generation Viewpoint /6./ |
place |
Izola |
dates |
04.10.2005-08.10.2005 |
country |
SI |
|
reportyear |
2006 |
RIV |
BB |
permalink |
http://hdl.handle.net/11104/0116689 |
arlyear |
2005 |
mrcbU56 |
152 KB |
mrcbU63 |
cav_un_epca*0045456 Proceedings of the 6th International PhD Workshop in Systems and Control, Young Generation Viewpoint 961-6303-74-0 1 6 Ljubljana Jozef Stefan Institute 2005 |
mrcbU67 |
Tinta D. 340 |
mrcbU67 |
Benko U. 340 |
|