bibtype C - Conference Paper (international conference)
ARLID 0026443
utime 20240111140632.1
mtime 20060120235959.9
title (primary) (eng) Prior information in Bayesian identification of a linear regression model
specification
page_count 6 s.
media_type CD-ROM
serial
ARLID cav_un_epca*0045456
ISBN 961-6303-74-0
title Proceedings of the 6th International PhD Workshop in Systems and Control, Young Generation Viewpoint
page_num 1-6
publisher
place Ljubljana
name Jozef Stefan Institute
year 2005
editor
name1 Tinta
name2 D.
editor
name1 Benko
name2 U.
title (cze) Apriorní informace v bayesovké identifikaci lineárního regresního modelu
keyword fictiticous data
keyword information matrix
keyword Gauss-inverse-Wishart
keyword MCMC
author (primary)
ARLID cav_un_auth*0101119
name1 Jirsa
name2 Ladislav
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0202818
name1 Varga
name2 F.
country CZ
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/prace/20050291.pdf
source_size 152 KB
COSATI 12B
COSATI 06R
COSATI 12C
cas_special
project
project_id 1ET100750404
agency GA AV ČR
country CZ
ARLID cav_un_auth*0001793
project
project_id 1M0572
agency GA MŠk
country CZ
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) Construction of prior information for Bayes identificationof linear regression model with normal noise and lack of data is presented. The model discrabes accumulation of activity in thyroid gland after administration of 131I to patients with thyroid cancer. One way of prior information is a restriction of parameters support. Second way uses theory of information merging between agents. Prior information improves prediction ability of the model and decreases lower bound for sufficient amount of data.
abstract (cze) Je ukázána konstrukce apriorní informace pro bayesovskou identifikaci lineárního regresního modelu s normálním šumem a malým počtem dat. Model přestavuje průběh aktivity štítné žlázy po terapeutické aplikaci 131I pacientům s karcinomem štítné žlázy. Pro apriorní informaci je použito omezení definičního oboru parametrů a teorie sdílení znalostí mezi agenty. Apriorní informace zlepšuje predikční schopnost modelu a snižuje dolní hranici pro minimální počet dat, s nimiž lze identifikaci provést.
action
ARLID cav_un_auth*0213261
name International PhD Workshop on Systems and Control a Young Generation Viewpoint /6./
place Izola
dates 04.10.2005-08.10.2005
country SI
reportyear 2006
RIV BB
permalink http://hdl.handle.net/11104/0116689
arlyear 2005
mrcbU56 152 KB
mrcbU63 cav_un_epca*0045456 Proceedings of the 6th International PhD Workshop in Systems and Control, Young Generation Viewpoint 961-6303-74-0 1 6 Ljubljana Jozef Stefan Institute 2005
mrcbU67 Tinta D. 340
mrcbU67 Benko U. 340