bibtype C - Conference Paper (international conference)
ARLID 0040021
utime 20240103182624.9
mtime 20060815235959.9
title (primary) (eng) Identification of epileptic activity in electroencephalograms using four techniques of independent component analysis
specification
page_count 3 s.
serial
ARLID cav_un_epca*0076638
ISBN 80-214-3152-0
title Analysis of Biomedical Signals and Images. BIOSIGNAL 2006
page_num 166-168
publisher
place Brno
name University of Technology
year 2006
editor
name1 Jan
name2 J.
editor
name1 Kozumplík
name2 J.
editor
name1 Provazník
name2 I.
title (cze) Separace epilepticke aktivity v zaznamech elektroencefalografu pomoci ctyr metod analyzy nezavislych komponent.
keyword electroencephalogram
keyword blind source separation
keyword independent component analysis
keyword epilepsy
keyword ictus
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213020
name1 Nielsen
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0215799
name1 Krajča
name2 V.
country CZ
COSATI 12B
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 1ET101210512
agency GA AV ČR
country CZ
ARLID cav_un_auth*0215801
research CEZ:AV0Z10750506
abstract (eng) The presented study aims to evaluate possibility of separation of epileptic activity from the EEG data using two well known and two recently proposed algorithms for independent component analysis (ICA): FastICA, EFICA, SOBI and WASOBI. All these techniques are shown to allow to concentrate an epileptic activityin two epilepsy-related independent components out of 19 channel EEG recordings. Among the techniques, the WASOBI was shown to be a most effective one.
abstract (cze) V clanku je zkoumana moznost separace epilepticke aktivity v EEG zaznamech pomoci dvou klasickych a dvou nedavno navrzenych metod slepe separace: FastICA, EFICA, SOBI a WASOBI. Tyto metody umoznuji pri zpracovani 19-kanaloveho EEG zaznamu epileptickou aktivitu vice-mene uspesne koncentrovat ve dvou signalovych komponetach. Mezi temito metodami se algoritmus WASOBI jevi jako ten ktery umoznuje nejpresnejsi separaci.
action
ARLID cav_un_auth*0215800
name Biosignal 2006
place Brno
dates 28.06.2006-30.06.2006
country CZ
reportyear 2007
RIV FH
permalink http://hdl.handle.net/11104/0133890
arlyear 2006
mrcbU63 cav_un_epca*0076638 Analysis of Biomedical Signals and Images. BIOSIGNAL 2006 80-214-3152-0 166 168 Brno University of Technology 2006
mrcbU67 Jan J. 340
mrcbU67 Kozumplík J. 340
mrcbU67 Provazník I. 340