| bibtype |
C -
Conference Paper (international conference)
|
| ARLID |
0040021 |
| utime |
20240103182624.9 |
| mtime |
20060815235959.9 |
| title
(primary) (eng) |
Identification of epileptic activity in electroencephalograms using four techniques of independent component analysis |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0076638 |
| ISBN |
80-214-3152-0 |
| title
|
Analysis of Biomedical Signals and Images. BIOSIGNAL 2006 |
| page_num |
166-168 |
| publisher |
| place |
Brno |
| name |
University of Technology |
| year |
2006 |
|
| editor |
|
| editor |
|
| editor |
|
|
| title
(cze) |
Separace epilepticke aktivity v zaznamech elektroencefalografu pomoci ctyr metod analyzy nezavislych komponent. |
| keyword |
electroencephalogram |
| keyword |
blind source separation |
| keyword |
independent component analysis |
| keyword |
epilepsy |
| keyword |
ictus |
| author
(primary) |
| ARLID |
cav_un_auth*0101212 |
| name1 |
Tichavský |
| name2 |
Petr |
| institution |
UTIA-B |
| full_dept |
Department of Stochastic Informatics |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0213020 |
| name1 |
Nielsen |
| name2 |
Jan |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0215799 |
| name1 |
Krajča |
| name2 |
V. |
| country |
CZ |
|
| COSATI |
12B |
| cas_special |
| project |
| project_id |
1M0572 |
| agency |
GA MŠk |
| ARLID |
cav_un_auth*0001814 |
|
| project |
| project_id |
1ET101210512 |
| agency |
GA AV ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0215801 |
|
| research |
CEZ:AV0Z10750506 |
| abstract
(eng) |
The presented study aims to evaluate possibility of separation of epileptic activity from the EEG data using two well known and two recently proposed algorithms for independent component analysis (ICA): FastICA, EFICA, SOBI and WASOBI. All these techniques are shown to allow to concentrate an epileptic activityin two epilepsy-related independent components out of 19 channel EEG recordings. Among the techniques, the WASOBI was shown to be a most effective one. |
| abstract
(cze) |
V clanku je zkoumana moznost separace epilepticke aktivity v EEG zaznamech pomoci dvou klasickych a dvou nedavno navrzenych metod slepe separace: FastICA, EFICA, SOBI a WASOBI. Tyto metody umoznuji pri zpracovani 19-kanaloveho EEG zaznamu epileptickou aktivitu vice-mene uspesne koncentrovat ve dvou signalovych komponetach. Mezi temito metodami se algoritmus WASOBI jevi jako ten ktery umoznuje nejpresnejsi separaci. |
| action |
| ARLID |
cav_un_auth*0215800 |
| name |
Biosignal 2006 |
| place |
Brno |
| dates |
28.06.2006-30.06.2006 |
| country |
CZ |
|
| reportyear |
2007 |
| RIV |
FH |
| permalink |
http://hdl.handle.net/11104/0133890 |
| arlyear |
2006 |
| mrcbU63 |
cav_un_epca*0076638 Analysis of Biomedical Signals and Images. BIOSIGNAL 2006 80-214-3152-0 166 168 Brno University of Technology 2006 |
| mrcbU67 |
Jan J. 340 |
| mrcbU67 |
Kozumplík J. 340 |
| mrcbU67 |
Provazník I. 340 |
|