bibtype J - Journal Article
ARLID 0041066
utime 20240103182727.2
mtime 20060913235959.9
title (primary) (eng) Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the Cramer-Rao Lower Bound
specification
page_count 13 s.
serial
ARLID cav_un_epca*0253242
ISSN 1045-9227
title IEEE Transactions on Neural Networks
volume_id 17
volume 5 (2006)
page_num 1265-1277
title (cze) Statisticky eficientni varianta algoritmu FastICA pro analyzu nezavislych komponent
keyword Independent component analysis
keyword blind source separation
keyword blind deconvolution
keyword Cramer-Rao lower bound
keyword algorithm FastICA
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213223
name1 Oja
name2 E.
country FI
COSATI 12B
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) FastICA is one of the most popular algorithms for Independent Component Analysis, demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cram'er-Rao lower bound. The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian distributions with parameter $/alpha$, denoted GG$(/alpha)$ for $/alpha >2$. We name the algorithm EFICA. Computational complexity of a Matlab$^TM$ implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA.
abstract (cze) Algoritmus FastICA je jednim z popularnich algoritmu ktere slouzi ke slepe separaci puvodne nezavislych signalu, ktere byly linearne smichane dohromady.V clanku je navrzena vylepsena varianta tohoto algoritmu, ktera je statisticky eficientni, tj. jeji presnost merena pomoci rezidualni variance chyby dosahuje Rao-Cramerovy meze. Tento vysledek j eodvozen za predpokladu, ze pravdepodobnostni distribuce puvodnich signalu patri do rodiny zobecnenych Gaussovych distribuci. Vypocetni narocnost nove procedury jen mirne (asi trikrat) prevysuje slozitost symetricke varianty algoritmu FastICA. Vlastnosti algoritmu jsou porovnavany v simulacich s jinymi algoritmy, a to nejen na tride zobecnenych Gaussovskych distribucich ale take na bi-modalnich distribucich a na separaci linearne smichanych recovych signalu.
reportyear 2007
RIV BB
permalink http://hdl.handle.net/11104/0134652
arlyear 2006
mrcbU63 cav_un_epca*0253242 IEEE Transactions on Neural Networks 1045-9227 Roč. 17 č. 5 2006 1265 1277