bibtype C - Conference Paper (international conference)
ARLID 0041069
utime 20240111140639.2
mtime 20060913235959.9
title (primary) (eng) A Computationally Affordable Implementation of An Asymptotically Optimal BSS Algorithm for AR Sources
specification
page_count 5 s.
media_type CD-ROM
serial
ARLID cav_un_epca*0076764
title Proceedings of 14th European Signal Processing Conference. EUSIPCO 2006
page_num 1-5
publisher
place Florence
name EURASIP
year 2006
title (cze) Vypocetne schudna implementace asymptoticky optimalniho algoritmu pro slepou separaci autoregresnich procesu
keyword independent component analysis
keyword blind source separation
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213972
name1 Doron
name2 E.
country IL
author
ARLID cav_un_auth*0213973
name1 Yeredor
name2 A.
country IL
author
ARLID cav_un_auth*0213020
name1 Nielsen
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type datovy soubor
source_size 212kB
COSATI 12B
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) The second-order blind identification (SOBI) algorithm for separation of stationary sources was proved to be useful in many biomedical applications. This paper revisits the so called weights-adjusted variant of SOBI, known as WASOBI, which is asymptotically optimal (in separating Gaussian parametric processes), yet prohibitively computationally demanding for more than 2-3 sources. A computationally feasible implementation of the algorithm is proposed, which has a complexity of the same order as SOBI. Excluding the estimation of the correlation matrices, the post-processing complexity of SOBI is $O(d^4M)$, where $d$ is the number of the signal components and $M$ is the number of covariance matrices involved. The additional complexity of our proposed implementation of WASOBI is $O(d^6+d^3M^3)$ operations. However, for WASOBI, the number $M$ of the matrices can be significantly lower than that of SOBI without compromising performance. WASOBI is shown to significantly outperform SOBI in simulation, and can be applied, e.g., in the processing of low density EEG signals.
abstract (cze) Algoritmus SOBI je popularnim algortmem pro slepou separaci signalu, pouzivanym v biomedicine. Tento clanek se zabyva implementaci asymptoticky optimalni varianty tohoto algoritmu zname pod akronymem WASOBI. Je navrzena varianta tohoto algorimu ktera ma radove stejnou vypocetni narocnost jako puvodni algoritmus SOBI a umoznuje separaci 20 nezavislych zdroju v casovem horizontu minut. Je ukazana zlepsena presnost separace v porovnani s algoritmem SOBI.
action
ARLID cav_un_auth*0216569
name European Signal Processing Conference. EUSIPCO /14./
place Florence
dates 04.09.2006-08.09.2006
country IT
reportyear 2007
RIV BB
permalink http://hdl.handle.net/11104/0134655
arlyear 2006
mrcbU56 datovy soubor 212kB
mrcbU63 cav_un_epca*0076764 Proceedings of 14th European Signal Processing Conference. EUSIPCO 2006 1 5 Florence EURASIP 2006