bibtype C - Conference Paper (international conference)
ARLID 0041074
utime 20240111140639.2
mtime 20060913235959.9
title (primary) (eng) Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI
specification
page_count 5 s.
media_type CD-ROM
serial
ARLID cav_un_epca*0076764
title Proceedings of 14th European Signal Processing Conference. EUSIPCO 2006
page_num 1-5
publisher
place Florence
name EURASIP
year 2006
title (cze) Slepa separace signalu pomoci kombinace dvou typu algoritmu: EFICA, pouzivajici statistik vyssich radu, a WASOBI, opirajici se o casovou strukturu separovanych signalu
keyword independent component analysis
keyword blind source separation
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213972
name1 Doron
name2 E.
country IL
author
ARLID cav_un_auth*0213973
name1 Yeredor
name2 A.
country IL
author
ARLID cav_un_auth*0214236
name1 Herrero
name2 G. G.
country FI
source
source_type datovy soubor
source_size 373kB
COSATI 12B
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) The aim of this paper is to combine the strengths of two recently proposed Blind Source Separation~(BSS) algorithms. The first algorithm, abbreviated as EFICA, is a sophisticated variant of the well-known Independent Component Analysis~(ICA) algorithm FastICA. EFICA is based on minimizing the statistical dependencies between the instantaneous (marginal) distributions of the estimated source signals and therefore disregards any possible time structure of the sources. The second algorithm, WASOBI, is a weight-adjusted variant of SOBI, a popular BSS algorithm that uses only the time structure of the source signals to achieve the separation. The separation accuracy of EFICA and WASOBI can be assessed using the estimated source signals alone, therefore allowing us to choose the most appropriate of the two in every scenario. Here, two different EFICA-WASOBI combination approaches are proposed and their performance assessed using images and simulated signals.
abstract (cze) Zamerem clanku je kombinace silnych stranek dvou nedavno navrzenych algoritmu pro slepou separaci signalu. Prvni algoritmus, znamy pod akronymem EFICA, je zalozen na minimalizaci statisticke nezavislosti rozlozeni jednotlivych zdroju v danem okamziku, ktery ignoruje moznou casovou strukturu signalu. Druhym signalem je algoritmus WASOBI, ktery vyuziva prave jen ruzne casove kovariancni struktury jednotlivych zdroju. Jelikoz presnost separace obou algoritmu lze odhadovat z danych dat, je mozne najit optimalni kombinaci techto algoritmu adaptivne. Dve mozne kombinace oubou algoritmu jsou studovany v simulacich na separaci linearni smesi ctyr obrazku.
action
ARLID cav_un_auth*0216569
name European Signal Processing Conference. EUSIPCO /14./
place Florence
dates 04.09.2006-08.09.2006
country IT
reportyear 2007
RIV BB
permalink http://hdl.handle.net/11104/0134660
arlyear 2006
mrcbU56 datovy soubor 373kB
mrcbU63 cav_un_epca*0076764 Proceedings of 14th European Signal Processing Conference. EUSIPCO 2006 1 5 Florence EURASIP 2006