bibtype J - Journal Article
ARLID 0041079
utime 20240103182728.1
mtime 20060912235959.9
title (primary) (eng) Building Road-Sign Classifiers Using a Trainable Similarity Measure
specification
page_count 13 s.
serial
ARLID cav_un_epca*0258150
ISSN 1524-9050
title IEEE Transactions on Intelligent Transportation Systems
volume_id 7
volume 3 (2006)
page_num 309-321
title (cze) Klasifikace dopravních značek založená na míře podobnosti zkoumaného objektu k třídě reprezentované typickou značkou
keyword classifier system design
keyword road-sign classification
keyword similarity data representation
author (primary)
ARLID cav_un_auth*0212668
name1 Paclík
name2 P.
country NL
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216548
name1 Duin
name2 R.P.W.
country NL
source
url http://www.ewh.ieee.org/tc/its/trans.html
COSATI 09K
COSATI 12B
COSATI 09J
cas_special
project
project_id IAA2075302
agency GA AV ČR
ARLID cav_un_auth*0001801
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
research CEZ:AV0Z10750506
abstract (eng) A frequently used strategy for road sign classification is based on the normalized cross-correlation similarity to class prototypes followed by the nearest neighbor classifier. Because of the global nature of the cross-correlation similarity, this method suffers from presence of uninformative pixels (caused e.g. by occlusions), and is computationally demanding. In this paper, a novel concept of a trainable similarity measure is introduced which alleviates these shortcomings. The similarity is based on individual matches in a set of local image regions. The set of regions, relevant for a particular similarity assessment, is refined by the training process. It is illustrated on a set of experiments with road sign classification problems that the trainable similarity yields high-performance data representations and classifiers. Apart from a multi-class classification accuracy, also non-sign rejection capability, and computational demands in execution are discussed. It appears that the trainable similarity representation alleviates some difficulties of other algorithms, currently used in road sign classification.
abstract (cze) Návrh klasifikátoru dopravních značek založeného na podobnosti zkoumaného objektu ke třídě značek reprezentované vždy typickou značkou (prototype-based rule). Navržen algoritmus založený na trénování podle množiny prototypů (trainable similarity). Experimenty na několika datových souborech ilustrují vyšší účinnost klasifikátoru v porovnání s klasifikátory až dosud používanými pro klasifikaci značek. Byly testovány i další vlastnosti navrženého klasifikátoru jako robustnost a časová náročnost.
reportyear 2007
RIV BB
permalink http://hdl.handle.net/11104/0134664
arlyear 2006
mrcbU63 cav_un_epca*0258150 IEEE Transactions on Intelligent Transportation Systems 1524-9050 1558-0016 Roč. 7 č. 3 2006 309 321