bibtype |
J -
Journal Article
|
ARLID |
0041079 |
utime |
20240103182728.1 |
mtime |
20060912235959.9 |
title
(primary) (eng) |
Building Road-Sign Classifiers Using a Trainable Similarity Measure |
specification |
|
serial |
ARLID |
cav_un_epca*0258150 |
ISSN |
1524-9050 |
title
|
IEEE Transactions on Intelligent Transportation Systems |
volume_id |
7 |
volume |
3 (2006) |
page_num |
309-321 |
|
title
(cze) |
Klasifikace dopravních značek založená na míře podobnosti zkoumaného objektu k třídě reprezentované typickou značkou |
keyword |
classifier system design |
keyword |
road-sign classification |
keyword |
similarity data representation |
author
(primary) |
ARLID |
cav_un_auth*0212668 |
name1 |
Paclík |
name2 |
P. |
country |
NL |
|
author
|
ARLID |
cav_un_auth*0101171 |
name1 |
Novovičová |
name2 |
Jana |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0216548 |
name1 |
Duin |
name2 |
R.P.W. |
country |
NL |
|
source |
|
COSATI |
09K |
COSATI |
12B |
COSATI |
09J |
cas_special |
project |
project_id |
IAA2075302 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0001801 |
|
project |
project_id |
507752 |
country |
XE |
agency |
EC |
ARLID |
cav_un_auth*0200689 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
A frequently used strategy for road sign classification is based on the normalized cross-correlation similarity to class prototypes followed by the nearest neighbor classifier. Because of the global nature of the cross-correlation similarity, this method suffers from presence of uninformative pixels (caused e.g. by occlusions), and is computationally demanding. In this paper, a novel concept of a trainable similarity measure is introduced which alleviates these shortcomings. The similarity is based on individual matches in a set of local image regions. The set of regions, relevant for a particular similarity assessment, is refined by the training process. It is illustrated on a set of experiments with road sign classification problems that the trainable similarity yields high-performance data representations and classifiers. Apart from a multi-class classification accuracy, also non-sign rejection capability, and computational demands in execution are discussed. It appears that the trainable similarity representation alleviates some difficulties of other algorithms, currently used in road sign classification. |
abstract
(cze) |
Návrh klasifikátoru dopravních značek založeného na podobnosti zkoumaného objektu ke třídě značek reprezentované vždy typickou značkou (prototype-based rule). Navržen algoritmus založený na trénování podle množiny prototypů (trainable similarity). Experimenty na několika datových souborech ilustrují vyšší účinnost klasifikátoru v porovnání s klasifikátory až dosud používanými pro klasifikaci značek. Byly testovány i další vlastnosti navrženého klasifikátoru jako robustnost a časová náročnost. |
reportyear |
2007 |
RIV |
BB |
permalink |
http://hdl.handle.net/11104/0134664 |
arlyear |
2006 |
mrcbU63 |
cav_un_epca*0258150 IEEE Transactions on Intelligent Transportation Systems 1524-9050 1558-0016 Roč. 7 č. 3 2006 309 321 |
|