bibtype J - Journal Article
ARLID 0041781
utime 20240103182809.5
mtime 20070119235959.9
title (primary) (eng) Color Texture Segmentation by Decomposition of Gaussian Mixture Model
specification
page_count 10 s.
serial
ARLID cav_un_epca*0258518
ISSN 0302-9743
title Lecture Notes in Computer Science
volume_id 19
volume 4225 (2006)
page_num 287-296
title (cze) Segmentace barevné textury dekompozicí modelu textury ve tvaru normální směsi
keyword texture segmentation
keyword gaussian mixture model
keyword EM algorithm
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/historie/grim-color texture segmentation by decomposition of gaussian mixture model.pdf
COSATI 09J
COSATI 12B
COSATI 09K
cas_special
project
project_id 1ET400750407
agency GA AV ČR
ARLID cav_un_auth*0001797
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
ARLID cav_un_auth*0216518
research CEZ:AV0Z10750506
abstract (eng) Recently we have proposed Gaussian mixtures as a local statistical model to synthesize artificial textures. We describe the statistical dependence of pixels of a movable window by multivariate Gaussian mixture of product components. The mixture components correspond to different variants of image patches as they appear in the window. In this sense they can be used to identify different segments of the source color texture image. The segmentation can be obtained by means of Bayes formula provided that a proper decomposition of the estimated Gaussian mixture into sub-mixtures is available. In this paper the mixture model is decomposed by maximizing the mean probability of correct classification of pixels into segments in a way taking into account the assumed consistency of final segmentation.
abstract (cze) Metoda je založena na lokálním statistickém modelu textury ve tvaru normální distribuční směsi, která popisuje statistické závislosti pixelů v rozsahu zvoleného pohyblivého okna. V práci je navržen algoritmus umožňující dekompozici směsi na části popisující jednotlivé segmenty textury.
action
ARLID cav_un_auth*0217721
name Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./
place Cancun
dates 14.11.2006-17.11.2006
country MX
reportyear 2007
RIV IN
permalink http://hdl.handle.net/11104/0135155
arlyear 2006
mrcbU63 cav_un_epca*0258518 Lecture Notes in Computer Science 0302-9743 Roč. 19 č. 4225 2006 287 296