bibtype V - Research Report
ARLID 0049258
utime 20240103183348.6
mtime 20070206235959.9
title (primary) (eng) Text document classification
publisher
place Praha
name ÚTIA AV ČR
pub_time 2006
specification
page_count 17 s.
edition
name Research Report
volume_id 2175
title (cze) Klasifikace textových dokumentů
keyword text document
keyword classification
author (primary)
ARLID cav_un_auth*0222295
name1 Humpolíček
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 05B
COSATI 05L
cas_special
research CEZ:AV0Z10750506
abstract (eng) In this report, we propose four feature selection algorithms based on the Best Individual Feature method and one based on the sequential method. After that the best method is selected for following classifier methods comparison. In this step we compare classification performance and computation expense of two classifiers based on Naive Bayes and third classifier is SVM. Classification performance is tested on the Reuters data set and Newsgroup data set. Finally we shows results on the multi-labelled subset of the Reuters data set.
reportyear 2007
RIV AF
permalink http://hdl.handle.net/11104/0139697
arlyear 2006
mrcbU10 2006
mrcbU10 Praha ÚTIA AV ČR