bibtype C - Conference Paper (international conference)
ARLID 0083357
utime 20240103184231.7
mtime 20070618235959.9
title (primary) (eng) A Hierarchical Finite-State Model for Texture Segmentation
specification
page_count 4 s.
serial
ARLID cav_un_epca*0083356
ISSN 1520-6149
title IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'07) /32./
part_title 1
page_num 1209-1212
publisher
place Los Alamos
name IEEE
year 2007
title (cze) Hierarchický model s konečnými stavy pro segmentaci textur
keyword image segmentation
keyword texture
keyword Markov random fields
author (primary)
ARLID cav_un_auth*0216377
name1 Scarpa
name2 G.
country IT
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0226576
name1 Zerubia
name2 J.
country FR
cas_special
project
project_id 1ET400750407
agency GA AV ČR
ARLID cav_un_auth*0001797
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
research CEZ:AV0Z10750506
abstract (eng) A novel model for unsupervised segmentation of texture images is presented. The image to be segmented is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. Both intra- and inter-texture interactions are modeled, by means of an underlying hierarchical finite-state model, and eventually the segmentation task is addressed in a completely unsupervised manner. The output is then a nested segmentation, so that the user may decide the scale at which the segmentation has to be provided. TFR is composed of two steps: the former focuses on the estimation of the states at the finest level of the hierarchy, and is associated with an image fragmentation, or over-segmentation; the latter deals with the reconstruction of the hierarchy representing the textural interaction at different scales.
abstract (cze) Nový model neřízené segmentace texturních obrazů je studován v článku. Segmentovaný obraz se nejprve diskretizuje a potom hierarchický model s konečnými stavy je automaticky naučen na datech pomocí sekvenčního optimalizačního algoritmu nazvaného Texture Fragmentation and Reconstruction (TFR) algoritmus. Jak intra, tak inter texturní interakce jsou modelovány pomocí tohoto hierarchického modelu s konečnými stavy a segmentace je uskutečněna zcela neřízeným způsobem. Výsledkem je hierarchická segmentace, kde se uživatel může rozhodnout pro její měřítko. TFR se skládá ze dvou kroků, odhadu stavů a obrazové fragmentace.
action
ARLID cav_un_auth*0228165
name IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'07) /32./
place Honolulu
dates 15.04.2007-20.04.2007
country US
reportyear 2008
RIV BD
permalink http://hdl.handle.net/11104/0146621
arlyear 2007
mrcbU63 cav_un_epca*0083356 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'07) /32./ 1 1520-6149 1209 1212 Los Alamos IEEE 2007