bibtype J - Journal Article
ARLID 0083440
utime 20240103184236.4
mtime 20070618235959.9
title (primary) (eng) Cramer-Rao-Induced Bound for Blind Separation of Stationary Parametric Gaussian Sources
specification
page_count 4 s.
serial
ARLID cav_un_epca*0253212
ISSN 1070-9908
title IEEE Signal Processing Letters
volume_id 14
volume 6 (2007)
page_num 417-420
publisher
name Institute of Electrical and Electronics Engineers
title (cze) Rao-Cramerova hranice pro slepou separaci stacionarních parametrických Gaussovských zdrojů
keyword blind source separation
keyword independent component analysis
keyword autoregressive
keyword ARMA
keyword moving average stationary Gaussain random processes
author (primary)
ARLID cav_un_auth*0213972
name1 Doron
name2 E.
country IL
author
ARLID cav_un_auth*0213973
name1 Yeredor
name2 A.
country IL
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 1M0572
agency GA MŠk
country CZ
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) The performance of blind source separation algorithms is commonly measured by the output interference to signal ratio (ISR). In this paper we derive an asymptotic bound on the attainable ISR for the case of Gaussian parametric (auto-regressive (AR), moving-average (MA) or ARMA) processes. Our bound is induced by the Cramer-Rao bound on estimation of the mixing matrix. We point out the relation to some previously obtained results, and provide a concise expression with some associated important insights. Using simulation, we demonstrate that the bound is attained asymptotically by some asymptotically efficient algorithms.
abstract (cze) Kvalita algoritmu pro slepou separaci je měřena pomocí výstupního poměru interference vůči šumu (ISR). V tomto článku je odvozena asymptotická mez pro ISR pro Gaussovské parametrické (AR, ARMA, MA) stacionarní procesy. V simulacích je ukázáno, že existují asymptoticky eficientní algoritmy, které této hranice dosahují.
reportyear 2008
RIV BB
permalink http://hdl.handle.net/11104/0146683
mrcbT16-f 1.226
mrcbT16-g 0.123
mrcbT16-h 5.2
mrcbT16-i 0.01262
mrcbT16-j 0.645
mrcbT16-k 1794
mrcbT16-l 252
mrcbT16-q 74
mrcbT16-s 1.433
mrcbT16-y 11.03
mrcbT16-x 2.32
arlyear 2007
mrcbU63 cav_un_epca*0253212 IEEE Signal Processing Letters 1070-9908 1558-2361 Roč. 14 č. 6 2007 417 420 Institute of Electrical and Electronics Engineers