bibtype C - Conference Paper (international conference)
ARLID 0085041
utime 20240103184350.0
mtime 20070829235959.9
title (primary) (eng) Initial Conditions for Kalman Filtering: Prior Knowledge Specification
specification
page_count 5 s.
media_type CD ROM
serial
ARLID cav_un_epca*0085040
ISBN 978-960-8457-98-0
title Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASC'07)
page_num 45-49
publisher
place Athens
name WSEAS Press
year 2007
editor
name1 Le
name2 Minh Hung
editor
name1 Demiralp
name2 Metin
editor
name1 Mladenov
name2 Valeri
editor
name1 Bojkovic
name2 Zoran
title (cze) Počáteční podmínky pro Kalmanův filtr: specifkace apriorní znalosti
keyword Kalman filtering
keyword prior knowledge
keyword state-space model
keyword exponential family
author (primary)
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
institution UTIA-B
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://as.utia.cz/publications/2007/Suz_07.pdf
cas_special
project
project_id 1ET100750401
agency GA AV ČR
ARLID cav_un_auth*0001792
project
project_id 1F43A/003/120
agency GA MDS
ARLID cav_un_auth*0001975
project
project_id GP201/06/P434
agency GA ČR
country CZ
ARLID cav_un_auth*0215307
research CEZ:AV0Z10750506
abstract (eng) The paper deals with a selection of the initial state for Kalman filtering. In practice the initial state mean and covariance are often chosen arbitrarily. The present paper considers the problem from the position of knowledge elicitation and proposes a methodology to extract the prior knowledge from available information by the respective processing in order to choose the adequate initial conditions. The suggested methodology is based on utilization of the conjugate prior distribution for models, belonging to the exponential family.
abstract (cze) Článek se zabývá problémem výběru počátečního stavu pro Kalmanův filtr. Střední hodnota a kovarianční matice počátečního stavu nebývají v praxi často voleny metodicky. V článku je navržena metodologie extrakce apriorní znalosti z dostupné expertní informace pro výběr počátečních podmínek. Navržená metodologie je založena na využití sdružené apriorní hustoty modelů patřících do exponenciální rodiny.
action
ARLID cav_un_auth*0229575
name 7th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASC'07)
place Athens
dates 24.08.2007-26.08.2007
country GR
reportyear 2008
RIV BB
permalink http://hdl.handle.net/11104/0147633
arlyear 2007
mrcbU63 cav_un_epca*0085040 Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASC'07) 978-960-8457-98-0 45 49 Athens WSEAS Press 2007
mrcbU67 Le Minh Hung 340
mrcbU67 Demiralp Metin 340
mrcbU67 Mladenov Valeri 340
mrcbU67 Bojkovic Zoran 340