bibtype J - Journal Article
ARLID 0085051
utime 20240103184350.5
mtime 20070829235959.9
title (primary) (eng) Two constructions on limits of entropy functions
specification
page_count 11 s.
serial
ARLID cav_un_epca*0256723
ISSN 0018-9448
title IEEE Transactions on Information Theory
volume_id 53
volume 1 (2007)
page_num 320-330
publisher
name Institute of Electrical and Electronics Engineers
title (cze) Dvě konstrukce na limitách entropických funkcí
keyword almost affine code
keyword coloring
keyword equipartition
keyword ideal secret sharing
keyword information inequalities
keyword polymatroid
author (primary)
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id IAA100750603
agency GA AV ČR
ARLID cav_un_auth*0216427
research CEZ:AV0Z10750506
abstract (eng) The correspondence between the subvectors of a random vector and their Shannon entropies gives rise to an entropy function. Limits of the entropy functions are closed to convolutions with modular polymatroids, and when integer-valued also to free expansions. The problem of description of the limits of entropy functions is reduced to those limits that correspond to matroids. Related results on entropy functions are reviewed with regard to polymatroid and matroid theories, and perfect and ideal secret sharing.
abstract (cze) Entropická funkce přiřazuje podvektorům náhodného vektoru jejich Shannovy entropie. Limity entropických funkcí jsou uzavřeny na konvoluce s modulárními polymatroidy a na volné expanze, pokud jsou celočíselné. Fundamentální problém popisu limit entropických funkcí je redukován na ty limity, které odpovídají matroidům.
reportyear 2008
RIV BA
permalink http://hdl.handle.net/11104/0147641
mrcbT16-f 2.991
mrcbT16-g 0.282
mrcbT16-h 9.1
mrcbT16-i 0.07934
mrcbT16-j 1.952
mrcbT16-k 16221
mrcbT16-l 397
mrcbT16-q 176
mrcbT16-s 6.802
mrcbT16-y 24.63
mrcbT16-x 5
arlyear 2007
mrcbU63 cav_un_epca*0256723 IEEE Transactions on Information Theory 0018-9448 1557-9654 Roč. 53 č. 1 2007 320 330 Institute of Electrical and Electronics Engineers