bibtype |
J -
Journal Article
|
ARLID |
0085051 |
utime |
20240103184350.5 |
mtime |
20070829235959.9 |
title
(primary) (eng) |
Two constructions on limits of entropy functions |
specification |
|
serial |
ARLID |
cav_un_epca*0256723 |
ISSN |
0018-9448 |
title
|
IEEE Transactions on Information Theory |
volume_id |
53 |
volume |
1 (2007) |
page_num |
320-330 |
publisher |
name |
Institute of Electrical and Electronics Engineers |
|
|
title
(cze) |
Dvě konstrukce na limitách entropických funkcí |
keyword |
almost affine code |
keyword |
coloring |
keyword |
equipartition |
keyword |
ideal secret sharing |
keyword |
information inequalities |
keyword |
polymatroid |
author
(primary) |
ARLID |
cav_un_auth*0101161 |
name1 |
Matúš |
name2 |
František |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
cas_special |
project |
project_id |
IAA100750603 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0216427 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
The correspondence between the subvectors of a random vector and their Shannon entropies gives rise to an entropy function. Limits of the entropy functions are closed to convolutions with modular polymatroids, and when integer-valued also to free expansions. The problem of description of the limits of entropy functions is reduced to those limits that correspond to matroids. Related results on entropy functions are reviewed with regard to polymatroid and matroid theories, and perfect and ideal secret sharing. |
abstract
(cze) |
Entropická funkce přiřazuje podvektorům náhodného vektoru jejich Shannovy entropie. Limity entropických funkcí jsou uzavřeny na konvoluce s modulárními polymatroidy a na volné expanze, pokud jsou celočíselné. Fundamentální problém popisu limit entropických funkcí je redukován na ty limity, které odpovídají matroidům. |
reportyear |
2008 |
RIV |
BA |
permalink |
http://hdl.handle.net/11104/0147641 |
mrcbT16-f |
2.991 |
mrcbT16-g |
0.282 |
mrcbT16-h |
9.1 |
mrcbT16-i |
0.07934 |
mrcbT16-j |
1.952 |
mrcbT16-k |
16221 |
mrcbT16-l |
397 |
mrcbT16-q |
176 |
mrcbT16-s |
6.802 |
mrcbT16-y |
24.63 |
mrcbT16-x |
5 |
arlyear |
2007 |
mrcbU63 |
cav_un_epca*0256723 IEEE Transactions on Information Theory 0018-9448 1557-9654 Roč. 53 č. 1 2007 320 330 Institute of Electrical and Electronics Engineers |
|