bibtype C - Conference Paper (international conference)
ARLID 0085590
utime 20240111140649.5
mtime 20071002235959.9
title (primary) (eng) Cooperative decision making without facilitator
specification
page_count 6 s.
media_type CD
serial
ARLID cav_un_epca*0087041
title IFAC Workshop "Adaptation and Learning in Control and Signal Processing" /9./
page_num 1-6
publisher
place Saint Petersburg
name IFAC
year 2007
editor
name1 Andrievsky
name2 B.R.
editor
name1 Fradkov
name2 A.L.
title (cze) kooperující rozhodování bez usnadňujícího prostředku
keyword Bayesian distributed decision making
keyword cooperation
keyword learning
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101138
name1 Kracík
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101092
name1 Guy
name2 Tatiana Valentine
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://as.utia.cz/publications/2007/KarKraGuy_07.pdf
source_size 141kB
cas_special
project
project_id 1ET100750401
agency GA AV ČR
ARLID cav_un_auth*0001792
project
project_id 2C06001
agency GA MŠk
ARLID cav_un_auth*0217685
project
project_id 1ET100750404
agency GA AV ČR
ARLID cav_un_auth*0001793
research CEZ:AV0Z10750506
abstract (eng) Estimation, learning, pattern recognition, diagnostics, fault detection and adaptive control are prominent examp­les of dynamic decision making under uncertainty. Under rather general conditions, they can be cast into a common theoretical framework labelled as Bayesian decision making. Richness of the practically de­velo­ped variants stems from: (i) domain-specific models used; (ii) adopted approximations fighting with li­mi­ted perceiving and evaluation abilities of the involved decision-making units, called here participants. While modeling is a well-developed art, the item (ii) still lacks a systematic theoretical framework. This paper provides a promising direction that could become a basis of such framework. It can be characterized as multiple-participant decision making exploiting Bayesian participants equipped with tools for sharing their knowledge and harmonizing their aims and restrictions with their neighbors.
abstract (cze) kooperující rozhodování bez usnadňujícího prostředku
action
ARLID cav_un_auth*0229859
name IFAC Workshop "Adaptation and Learning in Control and Signal Processing" /9./
place Saint Petersburg
dates 29.08.2007-31.08.2007
country RU
reportyear 2008
RIV BD
permalink http://hdl.handle.net/11104/0148069
arlyear 2007
mrcbU56 pdf 141kB
mrcbU63 cav_un_epca*0087041 IFAC Workshop "Adaptation and Learning in Control and Signal Processing" /9./ 1 6 Saint Petersburg IFAC 2007
mrcbU67 Andrievsky B.R. 340
mrcbU67 Fradkov A.L. 340