bibtype V - Research Report
ARLID 0085720
utime 20240103184427.4
mtime 20070918235959.9
title (primary) (eng) Does It Make Sense to Develop New Feature Selection Methods?
publisher
place Praha
name ÚTIA AV ČR
pub_time 2007
specification
page_count 11 s.
edition
name Research Report
volume_id 2193
title (cze) Má smysl vyvíjet nové metody výběru příznaků?
keyword feature selection
keyword subset search
keyword search methods
keyword performance estimation
keyword classification accuracy
author (primary)
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
project
project_id IAA2075302
agency GA AV ČR
ARLID cav_un_auth*0001801
research CEZ:AV0Z10750506
abstract (eng) One of hot topics discussed recently in relation to pattern recognition techniques is the question of actual performance of modern feature selection methods. Feature selection has been a highly active area of research in recent years due to its potential to improve both the performance and economy of automatic decision systems in various applicational fields, with medical diagnosis being among the most prominent. Feature selection may also improve the performance of classifiers learned from limited data, or contribute to model interpretability. The number of available methods and methodologies has grown rapidly while promising important improvements. Yet recently many authors put this development in question, claiming that simpler older tools show to be actually better than complex modern ones -- which, despite promises, are claimed to actually fail in real-world applications.
abstract (cze) Jedno z aktuálních témat diskutovaných v současné době ve vztahu k oboru rozpoznávání je otázka skutečné účinnosti moderních metod výběru příznaků. Výběr příznaků je stále zkoumaná oblast neboť může zlepšit jak účinnost tak i hospodárnost automatických rozhodovacích systémů v mnoha aplikačních oblastech, z nichž mezi nejdůležitější patří lékařská diagnostika. Výběr příznaků může také zlepšit účinnost klasifikátorů, navržených na základě omezeného množství dat, nebo přispět k interpretaci modelů. Zejména poslední dobou bylo vyvinuto mnoho metod a metodologií slibujících významné zlepšení. Nicméně objevila se také řada kritických příspěvků prohlašujících, že jednoduché staré nástroje jsou ve skutečnosti lepší než složité moderní metody, které, navzdory slibům, selhávají v reálných aplikacích. Ve zprávě zkoumáme toto tvrzení, ukazujeme několik ilustrativních příkladů, vyvozujeme závěry a doporučení týkající se očekávané účinnosti metod výběru příznaků.
reportyear 2008
RIV BB
permalink http://hdl.handle.net/11104/0148168
arlyear 2007
mrcbU10 2007
mrcbU10 Praha ÚTIA AV ČR