bibtype C - Conference Paper (international conference)
ARLID 0085844
utime 20240103184432.3
mtime 20070925235959.9
title (primary) (eng) Recurrent Bayesian Reasoning in Probabilistic Neural Networks
specification
page_count 10 s.
serial
ARLID cav_un_epca*0085843
ISBN 3-540-74693-5
title Artificial Neural Networks - ICANN 2007
part_num Part I.
part_title SL 1 - Theoretical Computer Science and General Issues
page_num 129-138
publisher
place Berlin
name Springer
year 2007
editor
name1 Marques de Sá
name2 J.
editor
name1 Alexandre
name2 L. A.
editor
name1 Duch
name2 W.
editor
name1 Mandic
name2 D.
title (cze) Rekurentní bayesovské odvozování v pravděpodobnostních neuronových sítích
keyword neural networks
keyword probabilistic approach
keyword distribution mixtures
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230019
name1 Hora
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
research CEZ:AV0Z10750506
abstract (eng) Considering the probabilistic approach to neural networks in the framework of statistical pattern recognition we assume approximation of class-conditional probability distributions by finite mixtures of product components. The mixture components can be interpreted as probabilistic neurons in neurophysiological terms and, in this respect, the fixed probabilistic description becomes conflicting with the well known short-term dynamic properties of biological neurons. We show that some parameters of PNN can be ``released'' for the sake of dynamic processes without destroying the statistically correct decision making. In particular, we can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate the correct recognition.
abstract (cze) Rekurentní bayesovské odvozování v pravděpodobnostních neuronových sítích
action
ARLID cav_un_auth*0230020
name International Conference on Artificial Neural Networks /17./
place Porto
dates 09.09.2007-13.09.2007
country PT
reportyear 2008
RIV BD
permalink http://hdl.handle.net/11104/0148268
arlyear 2007
mrcbU63 cav_un_epca*0085843 Artificial Neural Networks - ICANN 2007 Part I. 3-540-74693-5 129 138 Berlin Springer 2007 Lecture Notes in Computer Scinece 4669 SL 1 - Theoretical Computer Science and General Issues
mrcbU67 Marques de Sá J. 340
mrcbU67 Alexandre L. A. 340
mrcbU67 Duch W. 340
mrcbU67 Mandic D. 340