bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0085969 |
utime |
20240111140650.0 |
mtime |
20070919235959.9 |
title
(primary) (eng) |
A fast algorithm for blind separation of non-Gaussian and time-correlated signals |
specification |
page_count |
5 s. |
media_type |
CD ROM |
|
serial |
ARLID |
cav_un_epca*0086003 |
ISBN |
978-83-921340-2-2 |
title
|
Proccedings of the 15th European Signal Processing Conference. EUSIPCO 2007 |
page_num |
1731-1735 |
publisher |
place |
Poznan |
name |
PTETiS |
year |
2007 |
|
|
title
(cze) |
Rychlý algoritmus pro slepou separaci ne-Gaussovských a časově korelovaných signálů |
keyword |
Blind source separation |
keyword |
multidimensional independent components |
keyword |
FCOMBI |
author
(primary) |
ARLID |
cav_un_auth*0230093 |
name1 |
Gómez-Herrero |
name2 |
G. |
country |
FI |
|
author
|
ARLID |
cav_un_auth*0108100 |
name1 |
Koldovský |
name2 |
Zbyněk |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101212 |
name1 |
Tichavský |
name2 |
Petr |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0230094 |
name1 |
Egiazarian |
name2 |
K. |
country |
FI |
|
source |
source_type |
textový soubor |
source_size |
367 kB |
|
cas_special |
project |
project_id |
1M0572 |
agency |
GA MŠk |
ARLID |
cav_un_auth*0001814 |
|
project |
project_id |
GP102/07/P384 |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0227962 |
|
project |
project_id |
GA102/05/0278 |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0051169 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
In this article we propose a computationally efficient method (termed FCOMBI) to combine the strengths of non-Gaussianity based blind source separation (BSS) and cross-correlation-based BSS. This is done by fusing the separtion abilities of two well known algorithms: EFICA and WASOBI. The algorithm is suitable for the analysis of very high-dimensional datasets like high-density Electroencephalogram or Magnetoencephalogram recordings. |
abstract
(cze) |
V clanku je navrzen vypocetne nenarocny algoritmus, ktery kombinuje schopnosti slepe separace dvou odlisnych algorimu: EFICA, ktery vyuziva ne-gaussovskosti rozlozeni jednotlivych separovanych zdroju, a WASOBI, ktery vyuziva rozdilnosti frekvencnich spekter jednotlivych zdroju. Algoritmus je vhodny pro analyzu mnohadimensionalnich dat z elektroencefalogramu a magnetoencefaloogramu s vysokym rozlisenim. |
action |
ARLID |
cav_un_auth*0230095 |
name |
EUSIPCO 2007: The 15th European Signal Processing Conference |
place |
Poznan |
dates |
03.09.2007-07.09.2007 |
country |
PL |
|
reportyear |
2008 |
RIV |
FH |
permalink |
http://hdl.handle.net/11104/0148362 |
arlyear |
2007 |
mrcbU56 |
textový soubor 367 kB |
mrcbU63 |
cav_un_epca*0086003 Proccedings of the 15th European Signal Processing Conference. EUSIPCO 2007 978-83-921340-2-2 1731 1735 Poznan PTETiS 2007 |
|