bibtype C - Conference Paper (international conference)
ARLID 0085969
utime 20240111140650.0
mtime 20070919235959.9
title (primary) (eng) A fast algorithm for blind separation of non-Gaussian and time-correlated signals
specification
page_count 5 s.
media_type CD ROM
serial
ARLID cav_un_epca*0086003
ISBN 978-83-921340-2-2
title Proccedings of the 15th European Signal Processing Conference. EUSIPCO 2007
page_num 1731-1735
publisher
place Poznan
name PTETiS
year 2007
title (cze) Rychlý algoritmus pro slepou separaci ne-Gaussovských a časově korelovaných signálů
keyword Blind source separation
keyword multidimensional independent components
keyword FCOMBI
author (primary)
ARLID cav_un_auth*0230093
name1 Gómez-Herrero
name2 G.
country FI
author
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230094
name1 Egiazarian
name2 K.
country FI
source
source_type textový soubor
source_size 367 kB
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GP102/07/P384
agency GA ČR
country CZ
ARLID cav_un_auth*0227962
project
project_id GA102/05/0278
agency GA ČR
country CZ
ARLID cav_un_auth*0051169
research CEZ:AV0Z10750506
abstract (eng) In this article we propose a computationally efficient method (termed FCOMBI) to combine the strengths of non-Gaussianity based blind source separation (BSS) and cross-correlation-based BSS. This is done by fusing the separtion abilities of two well known algorithms: EFICA and WASOBI. The algorithm is suitable for the analysis of very high-dimensional datasets like high-density Electroencephalogram or Magnetoencephalogram recordings.
abstract (cze) V clanku je navrzen vypocetne nenarocny algoritmus, ktery kombinuje schopnosti slepe separace dvou odlisnych algorimu: EFICA, ktery vyuziva ne-gaussovskosti rozlozeni jednotlivych separovanych zdroju, a WASOBI, ktery vyuziva rozdilnosti frekvencnich spekter jednotlivych zdroju. Algoritmus je vhodny pro analyzu mnohadimensionalnich dat z elektroencefalogramu a magnetoencefaloogramu s vysokym rozlisenim.
action
ARLID cav_un_auth*0230095
name EUSIPCO 2007: The 15th European Signal Processing Conference
place Poznan
dates 03.09.2007-07.09.2007
country PL
reportyear 2008
RIV FH
permalink http://hdl.handle.net/11104/0148362
arlyear 2007
mrcbU56 textový soubor 367 kB
mrcbU63 cav_un_epca*0086003 Proccedings of the 15th European Signal Processing Conference. EUSIPCO 2007 978-83-921340-2-2 1731 1735 Poznan PTETiS 2007