bibtype C - Conference Paper (international conference)
ARLID 0085999
utime 20240103184438.7
mtime 20070924235959.9
title (primary) (eng) Using imsets for learning Bayesian networks
specification
page_count 12 s.
serial
ARLID cav_un_epca*0085998
title Proceedings of Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./
page_num 178-189
publisher
place Praha
name UTIA AV ČR
year 2007
editor
name1 Kroupa
name2 T.
editor
name1 Vejnarová
name2 J.
title (cze) Využití imsetů při učení bayesovských sítí
keyword Bayesian networks
keyword artificial intelligence
keyword probabilistic graphical models
keyword machine learning
author (primary)
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 1M0572
agency GA MŠk
country CZ
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
research CEZ:AV0Z10750506
abstract (eng) This paper describes a modification of the greedy equivalence search (GES) algorithm. The presented modification is based on the algebraic approach to learning. The states of the search space are standard imsets. Each standard imset represents an equivalence class of Bayesian networks. For a given quality criterion the database is represented by the respective data imset. This allows a very simple update of a given quality criterion since the moves between states are represented by differential imsets. We exploit a direct characterization of lower and upper inclusion neighborhood, which allows an efficient search for the best structure in the inclusion neighborhood. The algorithm was implemented in R and is freely available.
abstract (cze) Článek popisuje implementaci hladového algoritmu pro učení baysovských sítí. Algoritmus je založen na algebraických objektech - tzv. imsetech a na prohledávání tzv. inkluzivního okolí.
action
ARLID cav_un_auth*0230109
name Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./
place Liblice
dates 15.09.2007-18.09.2007
country CZ
reportyear 2008
RIV BB
permalink http://hdl.handle.net/11104/0148380
arlyear 2007
mrcbU63 cav_un_epca*0085998 Proceedings of Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./ 178 189 Praha UTIA AV ČR 2007
mrcbU67 Kroupa T. 340
mrcbU67 Vejnarová J. 340