bibtype J - Journal Article
ARLID 0086490
utime 20240103184506.8
mtime 20071002235959.9
title (primary) (eng) Minimum Information Loss Cluster Analysis for Cathegorical Data
specification
page_count 15 s.
serial
ARLID cav_un_epca*0258518
ISSN 0302-9743
title Lecture Notes in Computer Science
volume_id 2007
page_num 233-247
title (cze) Shluková analýza kategoriálních dat s minimální ztrátou informace
keyword Cluster Analysis
keyword Cathegorical Data
keyword EM algorithm
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230019
name1 Hora
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
research CEZ:AV0Z10750506
abstract (eng) The EM algorithm has been used repeatedly to identify latent classes in categorical data by estimating finite distribution mixtures of produkt components. Unfortunately, the underlying mixtures are not uniquely identifiable and, moreover, the estimated mixture parameters are starting-point dependent. For this reason we use the latent class model only to define a set of ``elementary'' classes by estimating a mixture of a large number components. We propose a hierarchical ``bottom up'' cluster analysis based on unifying the elementary latent classes sequentially. The clustering procedure is controlled by minimum information loss criterion.
abstract (cze) Shluková analýza kategoriálních dat s využitím kriteria minimální ztráty informace.
action
ARLID cav_un_auth*0230771
name International Conference on Machine Learning and Data Mining MLDM 2007 /5./
place Leipzig
dates 18.07.2007-20.07.2007
country DE
reportyear 2008
RIV BD
permalink http://hdl.handle.net/11104/0148741
arlyear 2007
mrcbU63 cav_un_epca*0258518 Lecture Notes in Computer Science 0302-9743 Roč. 2007 Č. 4571 2007 233 247