bibtype J - Journal Article
ARLID 0090278
utime 20240903170617.2
mtime 20071127235959.9
title (primary) (eng) Neuromorphic features of probabilistic neural networks
specification
page_count 16 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 43
volume 5 (2007)
page_num 697-712
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
title (cze) Neuromorfní vlastnosti pravděpodobnostních neuronových sítí
keyword probabilistic neural networks
keyword distribution mixtures
keyword sequential EM algorithm
keyword pattern recognition
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
research CEZ:AV0Z10750506
abstract (eng) We summarize the main results on probabilistic neural networks recently published in a series of papers. Considering the framework of statistical pattern recognition we assume approximation of class-conditional distributions by finite mixtures of product components. The probabilistic neurons correspond to mixture components and can be interpreted in neurophysiological terms. In this way we can find possible theoretical background of the functional properties of neurons. For example, the general formula for synaptical weights provides a statistical justification of the well known Hebbian principle of learning. Similarly, the mean effect of lateral inhibition can be expressed by means of a formula proposed by Perez as a measure of dependence tightness of involved variables.
abstract (cze) Souhrnná práce o pravděpodobnostních neuronových sítích, které nabízejí alternativní řešení problému výběru příznaků (podprostorový přístup) a jsou široce použitelné pro řešení mnohorozměrných úloh klasifikace s omezenými datovými soubory.
reportyear 2008
RIV IN
mrcbC52 4 O 4o 20231122133652.2
permalink http://hdl.handle.net/11104/0151218
mrcbT16-f 0.464
mrcbT16-g 0.044
mrcbT16-h 8.9
mrcbT16-i 0.0021
mrcbT16-j 0.359
mrcbT16-k 329
mrcbT16-l 68
mrcbT16-q 21
mrcbT16-s 1.071
mrcbT16-y 14.83
mrcbT16-x 0.67
arlyear 2007
mrcbTft \nSoubory v repozitáři: 0090278.pdf
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 43 č. 5 2007 697 712 Ústav teorie informace a automatizace AV ČR, v. v. i.