bibtype J - Journal Article
ARLID 0097225
utime 20240103185509.4
mtime 20080115235959.9
title (primary) (eng) Gamma-limits and relaxations for rate-independent evolutionary problems
specification
page_count 29 s.
serial
ARLID cav_un_epca*0252329
ISSN 0944-2669
title Calculus of Variations and Partial Differential Equations
volume_id 3
volume 31 (2008)
page_num 387-416
publisher
name Springer
title (cze) Gamma limity a uvolnení pro rychlostně nezávislé vývojové úlohy
keyword Rate-independent problems
keyword energetic formulation
keyword Gamma convergence
keyword relaxation
keyword time-incremental minimization
author (primary)
ARLID cav_un_auth*0015533
name1 Mielke
name2 A.
country DE
author
ARLID cav_un_auth*0101187
name1 Roubíček
name2 Tomáš
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0236901
name1 Stefannelli
name2 U.
country IT
cas_special
project
project_id LC06052
agency GA MŠk
country CZ
ARLID cav_un_auth*0229224
research CEZ:AV0Z10750506
abstract (eng) This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals $/calE$ and the dissipation distance $/calD$. For sequences $(/calE_k)_{k/in /N}$ and $(/calD_k)_{k/in /N}$ we address the question under which conditions the limits $q_/infty$ of solutions $q_k:[0,T]/to /calQ$ satisfy a suitable limit problem with limit functionals $/calE_/infty$ and $/calD_/infty$, which are the corresponding $/Gamma$-limits. We derive a sufficient condition, called /emph{conditional upper semi-continuity of the stable sets}, which is essential to guarantee that $q_/infty$ solves the limit problem. In particular, this condition holds if certain /emph{joint recovery sequences} exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions.
abstract (cze) V praci se vyšetřují Gamma ma limity a uvolnění pro rychlostně nezávislé vyvojové úlohy.
reportyear 2008
RIV BA
permalink http://hdl.handle.net/11104/0156413
mrcbT16-f 1.188
mrcbT16-g 0.216
mrcbT16-h 6
mrcbT16-i 0.00869
mrcbT16-j 1.21
mrcbT16-k 792
mrcbT16-l 74
arlyear 2008
mrcbU63 cav_un_epca*0252329 Calculus of Variations and Partial Differential Equations 0944-2669 1432-0835 Roč. 3 č. 31 2008 387 416 Springer