bibtype J - Journal Article
ARLID 0098117
utime 20240111140658.6
mtime 20080115235959.9
title (primary) (eng) Adhesivity of polymatroids
specification
page_count 14 s.
serial
ARLID cav_un_epca*0256498
ISSN 0012-365X
title Discrete Mathematics
volume_id 307
volume 21 (2007)
page_num 2464-2477
publisher
name Elsevier
title (cze) Adhesivita polymatroidov
keyword polymatroid
keyword matroid
keyword modular pair
keyword proper amalgam
keyword pasting
keyword entropy function
keyword non-Shannon information theoretical inequality
author (primary)
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový dokument
url http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V00-4MWPSM5-1-1&_cdi=5632&_user=640956&_orig=browse&_coverDate=10%2F06%2F2007&_sk=996929978&view=c&wchp=dGLbVlz-zSkWz&md5=81220a9e434d8fe5a92becb52f5843b5&ie=/sdarticle.pdf
cas_special
project
project_id IAA100750603
agency GA AV ČR
ARLID cav_un_auth*0216427
research CEZ:AV0Z10750506
abstract (eng) Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroids on a four-element set are characterized by Zhang-Yeung inequalities.
abstract (cze) Dva polymatroidy jsou adhesivní, když je nějaký polymtroid rozšiřuje tak, že nosiče jsou v něm modulárním párem. Byly zavedeny a studovány třídy polymatroidů s adhesivními restrikcemi a samoadhesivních polymatroidů. Adhesivita byla popsána pomocí polyhedrálních kuželů. Samoadhesivní polymatroidy na čtyřprvkové množině byly popsány pomocí Zhang-Yeungových nerovností.
reportyear 2008
RIV BA
permalink http://hdl.handle.net/11104/0157107
mrcbT16-f 0.501
mrcbT16-g 0.091
mrcbT16-h >10.0
mrcbT16-i 0.02481
mrcbT16-j 0.543
mrcbT16-k 3496
mrcbT16-l 319
mrcbT16-q 44
mrcbT16-s 0.994
mrcbT16-y 14.85
mrcbT16-x 0.38
arlyear 2007
mrcbU56 textový dokument
mrcbU63 cav_un_epca*0256498 Discrete Mathematics 0012-365X 1872-681X Roč. 307 č. 21 2007 2464 2477 Elsevier