bibtype |
J -
Journal Article
|
ARLID |
0098117 |
utime |
20240111140658.6 |
mtime |
20080115235959.9 |
title
(primary) (eng) |
Adhesivity of polymatroids |
specification |
|
serial |
ARLID |
cav_un_epca*0256498 |
ISSN |
0012-365X |
title
|
Discrete Mathematics |
volume_id |
307 |
volume |
21 (2007) |
page_num |
2464-2477 |
publisher |
|
|
title
(cze) |
Adhesivita polymatroidov |
keyword |
polymatroid |
keyword |
matroid |
keyword |
modular pair |
keyword |
proper amalgam |
keyword |
pasting |
keyword |
entropy function |
keyword |
non-Shannon information theoretical inequality |
author
(primary) |
ARLID |
cav_un_auth*0101161 |
name1 |
Matúš |
name2 |
František |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
IAA100750603 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0216427 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroids on a four-element set are characterized by Zhang-Yeung inequalities. |
abstract
(cze) |
Dva polymatroidy jsou adhesivní, když je nějaký polymtroid rozšiřuje tak, že nosiče jsou v něm modulárním párem. Byly zavedeny a studovány třídy polymatroidů s adhesivními restrikcemi a samoadhesivních polymatroidů. Adhesivita byla popsána pomocí polyhedrálních kuželů. Samoadhesivní polymatroidy na čtyřprvkové množině byly popsány pomocí Zhang-Yeungových nerovností. |
reportyear |
2008 |
RIV |
BA |
permalink |
http://hdl.handle.net/11104/0157107 |
mrcbT16-f |
0.501 |
mrcbT16-g |
0.091 |
mrcbT16-h |
>10.0 |
mrcbT16-i |
0.02481 |
mrcbT16-j |
0.543 |
mrcbT16-k |
3496 |
mrcbT16-l |
319 |
mrcbT16-q |
44 |
mrcbT16-s |
0.994 |
mrcbT16-y |
14.85 |
mrcbT16-x |
0.38 |
arlyear |
2007 |
mrcbU56 |
textový dokument |
mrcbU63 |
cav_un_epca*0256498 Discrete Mathematics 0012-365X 1872-681X Roč. 307 č. 21 2007 2464 2477 Elsevier |
|