| bibtype |
J -
Journal Article
|
| ARLID |
0106214 |
| utime |
20240103173125.4 |
| mtime |
20050418235959.9 |
| title
(primary) (eng) |
Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0252595 |
| ISSN |
0324-8569 |
| title
|
Control and Cybernetics |
| volume_id |
32 |
| volume |
3 (2003) |
| page_num |
683-705 |
|
| title
(cze) |
Stabilita ve smyslu Lipschitze pro nejlepší řízení pro ustálené rovnice Naviera a Stokesa |
| keyword |
incompressible viscous flow convexity analysis |
| keyword |
optimality conditions |
| author
(primary) |
| ARLID |
cav_un_auth*0101187 |
| name1 |
Roubíček |
| name2 |
Tomáš |
| institution |
UTIA-B |
| full_dept |
Department of Decision Making Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| name1 |
Tröltzsch |
| name2 |
F. |
| country |
DE |
|
| COSATI |
12A |
| cas_special |
| project |
| project_id |
IAA1075005 |
| agency |
GA AV ČR |
| ARLID |
cav_un_auth*0012782 |
|
| research |
CEZ:AV0Z1075907 |
| abstract
(eng) |
An optimal control problem with quadratic cost functional for the steady-state Navier-Stokes equations with no-slip boundary condition is considered. Lipschitz stability of locally optimal controls with respect to certain perturbations of both the cost functional and the equation is proved provided a second-order sufficient optimality condition holds. For a sufficiently small Reynolds number, even global Lipschitz stability of the unique optimal control is shown. |
| abstract
(cze) |
V článku se vyšetřuje stabilita ve smyslu Lipschitze pro nejlepší řízení pro ustálené rovnice Naviera a Stokesa |
| reportyear |
2005 |
| RIV |
BA |
| permalink |
http://hdl.handle.net/11104/0013396 |
| ID_orig |
UTIA-B 20040024 |
| arlyear |
2003 |
| mrcbU63 |
cav_un_epca*0252595 Control and Cybernetics 0324-8569 Roč. 32 č. 3 2003 683 705 |
|