bibtype |
J -
Journal Article
|
ARLID |
0106214 |
utime |
20240103173125.4 |
mtime |
20050418235959.9 |
title
(primary) (eng) |
Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations |
specification |
|
serial |
ARLID |
cav_un_epca*0252595 |
ISSN |
0324-8569 |
title
|
Control and Cybernetics |
volume_id |
32 |
volume |
3 (2003) |
page_num |
683-705 |
|
title
(cze) |
Stabilita ve smyslu Lipschitze pro nejlepší řízení pro ustálené rovnice Naviera a Stokesa |
keyword |
incompressible viscous flow convexity analysis |
keyword |
optimality conditions |
author
(primary) |
ARLID |
cav_un_auth*0101187 |
name1 |
Roubíček |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
name1 |
Tröltzsch |
name2 |
F. |
country |
DE |
|
COSATI |
12A |
cas_special |
project |
project_id |
IAA1075005 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0012782 |
|
research |
CEZ:AV0Z1075907 |
abstract
(eng) |
An optimal control problem with quadratic cost functional for the steady-state Navier-Stokes equations with no-slip boundary condition is considered. Lipschitz stability of locally optimal controls with respect to certain perturbations of both the cost functional and the equation is proved provided a second-order sufficient optimality condition holds. For a sufficiently small Reynolds number, even global Lipschitz stability of the unique optimal control is shown. |
abstract
(cze) |
V článku se vyšetřuje stabilita ve smyslu Lipschitze pro nejlepší řízení pro ustálené rovnice Naviera a Stokesa |
reportyear |
2005 |
RIV |
BA |
permalink |
http://hdl.handle.net/11104/0013396 |
ID_orig |
UTIA-B 20040024 |
arlyear |
2003 |
mrcbU63 |
cav_un_epca*0252595 Control and Cybernetics 0324-8569 Roč. 32 č. 3 2003 683 705 |
|