bibtype J - Journal Article
ARLID 0106260
utime 20240103173129.7
mtime 20050324235959.9
title (primary) (eng) Linear non-additive set-functions
specification
page_count 10 s.
serial
ARLID cav_un_epca*0256794
ISSN 0308-1079
title International Journal of General Systems
volume_id 33
volume 1 (2004)
page_num 89-98
publisher
name Taylor & Francis
title (cze) Lineárne neaditívne množinové funkcie
keyword aumann integral
keyword Choquet integral
keyword fuzzy measure
author (primary)
name1 Bouchon-Meunier
name2 B.
country FR
ARLID cav_un_auth*0015546
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
name1 Ralescu
name2 D. A.
country US
ARLID cav_un_auth*0021083
COSATI 12A
cas_special
project
project_id GA402/04/1026
agency GA ČR
ARLID cav_un_auth*0001809
research CEZ:AV0Z1075907
abstract (eng) It is known that for basis linear fuzzy measures the Aumann and the Choquet integrals defined on a special class of fuzzy subsets of some Banach space commute. We characterize basis linear fuzzy measure by means of appropriate linear functionals, and consequently the relevant integral representation (by means of the Lebesgue integral) is introduced. As a corollary the well-known additivity of perimeters of convex subsets in the real plane is obtained.
abstract (cze) Je známe, že pre bázové lineárne fuzzy miery komutujú Aumannov a Choquetov integrál, ktoré sú definované na špeciálnej triede fuzzy podmnožín nejakého Banachovho priestoru. V práci charakterizujeme bázové lineárne fuzzy miery pomocou vhodných lineárnych funkcionálov, a následne zavádzame príslušnú integrálnu reprezentáciu pomocou Lebesgueovho integrálu. Ako dôsledok dostávame známu aditivitu obvodov konvexnych podmnožín v reálnej rovine
reportyear 2005
RIV BA
permalink http://hdl.handle.net/11104/0013442
ID_orig UTIA-B 20040072
arlyear 2004
mrcbU63 cav_un_epca*0256794 International Journal of General Systems 0308-1079 1563-5104 Roč. 33 č. 1 2004 89 98 Taylor & Francis