bibtype |
J -
Journal Article
|
ARLID |
0106449 |
utime |
20240103173145.8 |
mtime |
20050324235959.9 |
title
(primary) (eng) |
Linear-programming approach to nonconvex variational problems |
specification |
|
serial |
ARLID |
cav_un_epca*0257346 |
ISSN |
0029-599X |
title
|
Numerische Mathematik |
volume_id |
99 |
volume |
2 (2004) |
page_num |
251-287 |
|
title
(cze) |
Přístup krz lineární programování k nekonvexním variačním úlohám |
keyword |
young measures |
keyword |
convex approximations |
keyword |
adaptive scheme |
author
(primary) |
name1 |
Bartels |
name2 |
S. |
country |
DE |
ARLID |
cav_un_auth*0015573 |
|
author
|
ARLID |
cav_un_auth*0101187 |
name1 |
Roubíček |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
COSATI |
12C |
cas_special |
project |
project_id |
IAA1075005 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0012782 |
|
research |
CEZ:AV0Z1075907 |
abstract
(eng) |
In nonconvex variational problems, there usually does not exist any classical solution but only generalized solutions which involve Young measures. After reviewing briefly the relaxation theory for such problems, an iterative scheme leading to a sequential linear programming is introduced, and its convergence is proved by a Banach fixed-point technique. Then an approximation scheme is proposed and analyzed, and calculations of an illustrative 2D broken-extremal example are presented. |
abstract
(cze) |
Článek se zabývá přístupem krz lineární programování k nekonvexním variačním úlohám |
reportyear |
2005 |
RIV |
BA |
permalink |
http://hdl.handle.net/11104/0013630 |
ID_orig |
UTIA-B 20040261 |
arlyear |
2004 |
mrcbU63 |
cav_un_epca*0257346 Numerische Mathematik 0029-599X 0945-3245 Roč. 99 č. 2 2004 251 287 |
|