bibtype C - Conference Paper (international conference)
ARLID 0306560
utime 20240111140700.5
mtime 20080410235959.9
title (primary) (eng) A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix
specification
page_count 4 s.
media_type CD-ROM
serial
ARLID cav_un_epca*0306559
ISBN 978-1-4244-1483-3
ISBN 1-4244-1484-9
title ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing
page_num 3321-3324
publisher
place Bryan
name Conference Management Services
year 2008
title (cze) Rychlý algoritmus pro přibližnou vzájemnou diagonalizaci, používající kriterium s blokově diagonální váhovou maticí
keyword approximate joint diagonalization
keyword blind source separation
keyword autoregressive processes
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213973
name1 Yeredor
name2 A.
country IL
author
ARLID cav_un_auth*0213020
name1 Nielsen
name2 Jan
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový dokument
source_size 251kB
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) We propose a new algorithm for Approximate Joint Diagonalization (AJD) with two main advantages over existing state-of-the-art algorithms: Improved overall running speed, especially in large-scale (high-dimensional) problems; and an ability to incorporate specially structured weight-matrices into the AJD criterion. The algorithm is based on approximate Gauss iterations for successive reduction of a weighted Least Squares off-diagonality criterion. The proposed Matlab implementation allows AJD of ten 100x100 matrices in 3-4 seconds (for the unweighted case) on a common PC (Pentium M, 1.86GHz, 2GB RAM), generally 3-5 times faster than the fastest competitor. The ability to incorporate weights allows fast large-scale realization of optimized versions of classical blind source separation algorithms, such as Second-Order Blind Identification (SOBI), whose weighted version (WASOBI) yields significantly improved separation performance.
abstract (cze) V práci je navržen nový algoritmus pro vzájemnou diagonalizaci matic, který má oproti existujícím algoritmům dvě hlavní výhody: zlepšená rychlost výpočtu, zvláště u matic s vysokou dimenzí, a možnost využití specielně strukturovaných váhových matic v diagonalizačním kriteriu. Navržená implementace algoritmu v protředí Matlab umožnuje diagonalizaci 10 matic o velikosti 100 x 100 na běžném PC (Pentium M, 1.86GHz, 2GB RAM) - v průměru je 2-5x rychlejší než dosud nejrychlejší alternativy. Algoritmus umožňuje rychlou implementaci algoritmu WASOBI pro slepou separaci nezávislých autoregresních procesů s různými spektry.
action
ARLID cav_un_auth*0238885
name ICASSP 2008, IEEE International Conference on Acoustics, Speech adn Signal Processing
place Las Vegas
dates 30.03.2008-04.04.2008
country US
reportyear 2010
RIV BB
permalink http://hdl.handle.net/11104/0004577
arlyear 2008
mrcbU56 textový dokument 251kB
mrcbU63 cav_un_epca*0306559 ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing 978-1-4244-1483-3 3321 3324 Bryan Conference Management Services 2008