bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0306560 |
utime |
20240111140700.5 |
mtime |
20080410235959.9 |
title
(primary) (eng) |
A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix |
specification |
page_count |
4 s. |
media_type |
CD-ROM |
|
serial |
ARLID |
cav_un_epca*0306559 |
ISBN |
978-1-4244-1483-3 |
ISBN |
1-4244-1484-9 |
title
|
ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing |
page_num |
3321-3324 |
publisher |
place |
Bryan |
name |
Conference Management Services |
year |
2008 |
|
|
title
(cze) |
Rychlý algoritmus pro přibližnou vzájemnou diagonalizaci, používající kriterium s blokově diagonální váhovou maticí |
keyword |
approximate joint diagonalization |
keyword |
blind source separation |
keyword |
autoregressive processes |
author
(primary) |
ARLID |
cav_un_auth*0101212 |
name1 |
Tichavský |
name2 |
Petr |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0213973 |
name1 |
Yeredor |
name2 |
A. |
country |
IL |
|
author
|
ARLID |
cav_un_auth*0213020 |
name1 |
Nielsen |
name2 |
Jan |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
source_type |
textový dokument |
source_size |
251kB |
|
cas_special |
project |
project_id |
1M0572 |
agency |
GA MŠk |
ARLID |
cav_un_auth*0001814 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
We propose a new algorithm for Approximate Joint Diagonalization (AJD) with two main advantages over existing state-of-the-art algorithms: Improved overall running speed, especially in large-scale (high-dimensional) problems; and an ability to incorporate specially structured weight-matrices into the AJD criterion. The algorithm is based on approximate Gauss iterations for successive reduction of a weighted Least Squares off-diagonality criterion. The proposed Matlab implementation allows AJD of ten 100x100 matrices in 3-4 seconds (for the unweighted case) on a common PC (Pentium M, 1.86GHz, 2GB RAM), generally 3-5 times faster than the fastest competitor. The ability to incorporate weights allows fast large-scale realization of optimized versions of classical blind source separation algorithms, such as Second-Order Blind Identification (SOBI), whose weighted version (WASOBI) yields significantly improved separation performance. |
abstract
(cze) |
V práci je navržen nový algoritmus pro vzájemnou diagonalizaci matic, který má oproti existujícím algoritmům dvě hlavní výhody: zlepšená rychlost výpočtu, zvláště u matic s vysokou dimenzí, a možnost využití specielně strukturovaných váhových matic v diagonalizačním kriteriu. Navržená implementace algoritmu v protředí Matlab umožnuje diagonalizaci 10 matic o velikosti 100 x 100 na běžném PC (Pentium M, 1.86GHz, 2GB RAM) - v průměru je 2-5x rychlejší než dosud nejrychlejší alternativy. Algoritmus umožňuje rychlou implementaci algoritmu WASOBI pro slepou separaci nezávislých autoregresních procesů s různými spektry. |
action |
ARLID |
cav_un_auth*0238885 |
name |
ICASSP 2008, IEEE International Conference on Acoustics, Speech adn Signal Processing |
place |
Las Vegas |
dates |
30.03.2008-04.04.2008 |
country |
US |
|
reportyear |
2010 |
RIV |
BB |
permalink |
http://hdl.handle.net/11104/0004577 |
arlyear |
2008 |
mrcbU56 |
textový dokument 251kB |
mrcbU63 |
cav_un_epca*0306559 ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing 978-1-4244-1483-3 3321 3324 Bryan Conference Management Services 2008 |
|