bibtype C - Conference Paper (international conference)
ARLID 0306561
utime 20240111140700.5
mtime 20080410235959.9
title (primary) (eng) Extension of EFICA Algorithm for Blind Separation of Piecewise Stationary Non-Gaussian Sources
specification
page_count 4 s.
media_type CD-ROM
serial
ARLID cav_un_epca*0306559
ISBN 978-1-4244-1483-3
ISBN 1-4244-1484-9
title ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing
page_num 1913-1916
publisher
place Bryan
name Conference Management Services
year 2008
title (cze) Zobecnění algoritmu EFICA pro slepou separaci po částech stacionárních ne-gaussovských procesů
keyword independent component analysis
keyword piecewise stationary signals
keyword blind source separation
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0050739
name1 Málek
name2 J.
country CZ
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0238913
name1 Deville
name2 Y.
country FR
author
ARLID cav_un_auth*0238914
name1 Hosseini
name2 S.
country FR
source
source_type textový dokument
source_size 150kB
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GP102/07/P384
agency GA ČR
country CZ
ARLID cav_un_auth*0227962
research CEZ:AV0Z10750506
abstract (eng) We propose an extension of algorithm EFICA for piecewise stationary and non-Gaussian signals. Cramér-Rao bound for this model is derived and the extended algorithm is shown to be asymptotically efficient if score functions of the signals are known in each block. In contrast to classical ICA algorithms, the proposed method is able to profit from varying distribution of the original signals as well as from their non-stationarity, which is demonstrated on simulations with real-world signals.
abstract (cze) V práci je navrženo zobecnění algoritmu EFICA pro slepou separaci po částech stacionárních negaussovských zdrojů. Navržená metoda využívá jak různosti pravděpodobnostního rozložení separovaných signálů v jednotlivých časových intervalech, tak proměnlivosti jejich variance. Přesnost separace dosahuje příslušné Rao-Cramerovy meze za předpokladu, že variance signálů je stejná na všech intervalech.
action
ARLID cav_un_auth*0238885
name ICASSP 2008, IEEE International Conference on Acoustics, Speech adn Signal Processing
place Las Vegas
dates 30.03.2008-04.04.2008
country US
reportyear 2010
RIV BB
permalink http://hdl.handle.net/11104/0004578
arlyear 2008
mrcbU56 textový dokument 150kB
mrcbU63 cav_un_epca*0306559 ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing 978-1-4244-1483-3 1913 1916 Bryan Conference Management Services 2008