bibtype J - Journal Article
ARLID 0307496
utime 20240103190001.0
mtime 20080516235959.9
title (primary) (eng) Knowledge Uncertainty and Composed Classifier
specification
page_count 5 s.
serial
ARLID cav_un_epca*0305643
ISSN 1998-0140
title International Journal of Circuits, Systems and Signal Processing
volume_id 1
volume 2 (2007)
page_num 101-105
title (cze) Neurčitost znalostí a složený klasifikátor
keyword Boosting architecture
keyword contextual modelling
keyword composed classifier
keyword knowledge management,
keyword knowledge
keyword uncertainty
author (primary)
ARLID cav_un_auth*0101129
name1 Klimešová
name2 Dana
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0015539
name1 Ocelíková
name2 E.
country SK
cas_special
research CEZ:AV0Z10750506
abstract (eng) The paper discuss the problem of wide context (temporal, spatial, local, objective, attribute oriented, relation oriented) as a tool to compensate and to decrease the uncertainty of data, classification and analytical process at all process to increase the information value of decision support. The contribution deals with a problem of creating the composed classifier with boosting architecture, whose components are composed of classifiers working with k - NN algorithm (k - th nearest neighbour).
abstract (cze) Příspěvek je věnován problematice širokého kontextu z hlediska jeho možností kompenzovat neurčitost dat.
reportyear 2008
RIV IN
permalink http://hdl.handle.net/11104/0160247
arlyear 2007
mrcbU63 cav_un_epca*0305643 International Journal of Circuits, Systems and Signal Processing 1998-0140 Roč. 1 č. 2 2007 101 105