bibtype |
J -
Journal Article
|
ARLID |
0307496 |
utime |
20240103190001.0 |
mtime |
20080516235959.9 |
title
(primary) (eng) |
Knowledge Uncertainty and Composed Classifier |
specification |
|
serial |
ARLID |
cav_un_epca*0305643 |
ISSN |
1998-0140 |
title
|
International Journal of Circuits, Systems and Signal Processing |
volume_id |
1 |
volume |
2 (2007) |
page_num |
101-105 |
|
title
(cze) |
Neurčitost znalostí a složený klasifikátor |
keyword |
Boosting architecture |
keyword |
contextual modelling |
keyword |
composed classifier |
keyword |
knowledge management, |
keyword |
knowledge |
keyword |
uncertainty |
author
(primary) |
ARLID |
cav_un_auth*0101129 |
name1 |
Klimešová |
name2 |
Dana |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0015539 |
name1 |
Ocelíková |
name2 |
E. |
country |
SK |
|
cas_special |
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
The paper discuss the problem of wide context (temporal, spatial, local, objective, attribute oriented, relation oriented) as a tool to compensate and to decrease the uncertainty of data, classification and analytical process at all process to increase the information value of decision support. The contribution deals with a problem of creating the composed classifier with boosting architecture, whose components are composed of classifiers working with k - NN algorithm (k - th nearest neighbour). |
abstract
(cze) |
Příspěvek je věnován problematice širokého kontextu z hlediska jeho možností kompenzovat neurčitost dat. |
reportyear |
2008 |
RIV |
IN |
permalink |
http://hdl.handle.net/11104/0160247 |
arlyear |
2007 |
mrcbU63 |
cav_un_epca*0305643 International Journal of Circuits, Systems and Signal Processing 1998-0140 Roč. 1 č. 2 2007 101 105 |
|