| bibtype |
J -
Journal Article
|
| ARLID |
0307545 |
| utime |
20240903170417.4 |
| mtime |
20080516235959.9 |
| title
(primary) (eng) |
The Brownian net |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0250815 |
| ISSN |
0091-1798 |
| title
|
Annals of Probability |
| volume_id |
36 |
| volume |
3 (2008) |
| page_num |
1153-1208 |
| publisher |
| name |
Institute of Mathematical Statistics |
|
|
| title
(cze) |
Brownova síť |
| keyword |
Brownian net |
| keyword |
Brownian web |
| keyword |
branching-coalescing random walks |
| keyword |
branching-coalescing point set |
| author
(primary) |
| ARLID |
cav_un_auth*0239624 |
| name1 |
Sun |
| name2 |
R. |
| country |
DE |
|
| author
|
| ARLID |
cav_un_auth*0217893 |
| name1 |
Swart |
| name2 |
Jan M. |
| institution |
UTIA-B |
| full_dept |
Department of Stochastic Informatics |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| cas_special |
| project |
| project_id |
GA201/06/1323 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0217370 |
|
| project |
| project_id |
GA201/07/0237 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0228641 |
|
| research |
CEZ:AV0Z10750506 |
| abstract
(eng) |
The (standard) Brownian web is a collection of coalescing one-dimensional Brownian motions, starting from each point in space and time. It arises as the diffusive scaling limit of a collection of coalescing random walks. We show that it is possible to obtain a nontrivial limiting object if the random walks in addition branch with a small probability. We call the limiting object the Brownian net, and study some of its elementary properties. |
| abstract
(cze) |
Brownova pavučina (Standartní) je soubor splývajících Brownových pohybů, začinajících v každém bodě v prostoru i čase. Vzniká jako difusní škálovací limita souboru splývajících náhodných procházek. Ukážeme, že lze získat netriviální limitní objekt, když se náhodné procházky navíc s malou pravděpodobností větví. Limitní objekt nazýváme Brownova síť a studujeme některé její základní vlastnosti. |
| reportyear |
2008 |
| RIV |
BA |
| permalink |
http://hdl.handle.net/11104/0160273 |
| mrcbT16-f |
1.587 |
| mrcbT16-g |
0.356 |
| mrcbT16-h |
>10.0 |
| mrcbT16-i |
0.01728 |
| mrcbT16-j |
1.83 |
| mrcbT16-k |
3165 |
| mrcbT16-l |
73 |
| mrcbT16-q |
46 |
| mrcbT16-s |
2.449 |
| mrcbT16-y |
22.37 |
| mrcbT16-x |
1.2 |
| arlyear |
2008 |
| mrcbU63 |
cav_un_epca*0250815 Annals of Probability 0091-1798 Roč. 36 č. 3 2008 1153 1208 Institute of Mathematical Statistics |
|