bibtype C - Conference Paper (international conference)
ARLID 0311211
utime 20240103190335.8
mtime 20090326235959.9
WOS 000259567200006
title (primary) (eng) Extraction of Binary Features by Probabilistic Neural Networks
specification
page_count 10 s.
serial
ARLID cav_un_epca*0311333
ISBN 978-3-540-87558-1
title Artificial Neural Networks - ICANN 2008
part_num Part II
page_num 52-61
publisher
place Berlin
name Springer
year 2008
editor
name1 Kůrková
name2 V.
editor
name1 Neruda
name2 R.
editor
name1 Koutník
name2 J.
title (cze) Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí
keyword Probabilistic neural networks
keyword Feature extraction
keyword Recognition of numerals
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
research CEZ:AV0Z10750506
abstract (eng) In order to design probabilistic neural networks in the framework of pattern recognition we estimate class-conditional probability distributions in the form of finite mixtures of product components. As the mixture components correspond to neurons we specify the properties of neurons in terms of component parameters. The probabilistic features defined by neuron outputs can be used to transform the classification problem without information loss and, simultaneously, the Shannon entropy of the feature space is minimized. We show that, instead of dimensionality reduction, the decision problem can be simplified by using binary approximation of the probabilistic features. In experiments the resulting binary features improve recognition accuracy but also they are nearly independent - in accordance with the minimum entropy property.
abstract (cze) Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí
action
ARLID cav_un_auth*0241921
name ICANN 2008. International Conference on Artificial Neural Networks /18./
place Prague
dates 03.09.2008-06.09.2008
country CZ
reportyear 2009
RIV IN
permalink http://hdl.handle.net/11104/0162890
arlyear 2008
mrcbU34 000259567200006 WOS
mrcbU63 cav_un_epca*0311333 Artificial Neural Networks - ICANN 2008 Part II 978-3-540-87558-1 52 61 Berlin Springer 2008 Lecture Notes in Computer Science 5164
mrcbU67 Kůrková V. 340
mrcbU67 Neruda R. 340
mrcbU67 Koutník J. 340