bibtype C - Conference Paper (international conference)
ARLID 0311416
utime 20240103190348.9
mtime 20081008235959.9
title (primary) (eng) Wavelet Neural Networks Prediction of Central European Stock Markets
specification
page_count 8 s.
serial
ARLID cav_un_epca*0311267
ISBN 978-80-8078-217-7
title Quantitative Methods in Economics: Multiple Criteria Decision making XIV
page_num 291-297
publisher
place Bratislava
name University of Economics in Bratislava
year 2008
editor
name1 Reiff
name2 Sladký
title (cze) Vlnové neurálních sítě předvídající centrální evropský trh s cennými papíry
keyword neural networks
keyword hard threshold denoising
keyword wavelets
author (primary)
ARLID cav_un_auth*0101217
name1 Vácha
name2 Lukáš
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id GP402/08/P207
agency GA ČR
ARLID cav_un_auth*0241655
project
project_id GA402/06/1417
agency GA ČR
country CZ
ARLID cav_un_auth*0213949
research CEZ:AV0Z10750506
abstract (eng) In this paper we apply neural network with denoising layer method for forecasting of Central European Stock Exchanges, namely Prague, Budapest and Warsaw. Hard threshold denoising with Daubechies 6 wavelet filter and three level decomposition is used to denoise the stock index returns, and two-layer feed-forward neural network with Levenberg-Marquardt learning algorithm is used for modeling. The results show that wavelet network structure is able to approximate the underlying process of considered stock markets better that multilayered neural network architecture without using wavelets. Further on we discuss the impact of structural changes of the market on forecasting accuracy, and we find that for certain periods the one-step-ahead prediction accuracy of the direction of the stock index can reach 60% to 70%.
abstract (cze) Vlnové neurálních sítě předvídající centrální evropský trh s cennými papíry
action
ARLID cav_un_auth*0241903
name Quantitative Methods in Economics: Multiplie Criteria Decision Making XIV
place Tatranská Lomnica
dates 05.07.2008-07.07.2008
country SK
reportyear 2009
RIV AH
permalink http://hdl.handle.net/11104/0163034
arlyear 2008
mrcbU63 cav_un_epca*0311267 Quantitative Methods in Economics: Multiple Criteria Decision making XIV 978-80-8078-217-7 291 297 Kvantitativní metody v ekonomii: Vícekriteriální rozhodování XIV Bratislava University of Economics in Bratislava 2008
mrcbU67 Reiff Sladký 340