bibtype C - Conference Paper (international conference)
ARLID 0317515
utime 20240111140712.5
mtime 20081218235959.9
title (primary) (eng) Structural Poisson Mixtures for Classification of Documents
specification
page_count 4 s.
media_type CD-ROM
serial
ARLID cav_un_epca*0317587
ISBN 978-1-4244-2174-9
title Proceedings of the 19th International Conference on Pattern Recognition
page_num 1324-1327
publisher
place Los Alamitos
name IEEE Press
year 2008
title (cze) Strukturní Poissonovské směsi pro klasifikaci dokumentů
keyword classification of documents
keyword Poisson mixtures
keyword Structural approach
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type hypertextový soubor
url http://library.utia.cas.cz/separaty/2008/RO/grim-structural poisson mixtures for classification of documents.pdf
source_size 632 MB
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
research CEZ:AV0Z10750506
abstract (eng) Considering the statistical text classification problem we approximate class-conditional probability distributions by structurally modified Poisson mixtures. By introducing the structural model we can use different subsets of input variables to evaluate conditional probabilities of different classes in the Bayes formula. The method is applicable to document vectors of arbitrary dimension without any preprocessing. The structural optimization can be included into the EM algorithm in a statistically correct way.
abstract (cze) V rámci statistického přístupu k problému klasifikace dokumentů jsou dokumenty reprezentovány formou /bag-of-words/. Podmíněné distribuce dokumentů v jednotlivých třídách jsou aproximovány ve tvaru strukturní poissonovské distribuční směsi. Bayesovská klasifikace dokumentů je ověřována na datových souborech Reuters a 20 NEWSGROUPS.
action
ARLID cav_un_auth*0245453
name 19th International Conference on Pattern Recognition
place Tampa
dates 07.12.2008-11.12.2008
country US
reportyear 2010
RIV IN
permalink http://hdl.handle.net/11104/0167137
arlyear 2008
mrcbU56 hypertextový soubor 632 MB
mrcbU63 cav_un_epca*0317587 Proceedings of the 19th International Conference on Pattern Recognition 978-1-4244-2174-9 1324 1327 Los Alamitos IEEE Press 2008