bibtype M - Monography Chapter
ARLID 0320325
utime 20240103191228.5
mtime 20091112235959.9
DOI 10.1007/978-0-387-84816-7
title (primary) (eng) Causality in Time Series: Its Detection and Quantification by Means of Information Theory
specification
page_count 24 s.
book_pages 389
serial
ARLID cav_un_epca*0320324
ISBN 978-0-387-84815-0
title Information Theory and Statistical Learning
page_num 183-207
publisher
place New York
name Springer
year 2008
editor
name1 Emmert-Streib
name2 Frank
editor
name1 Dehmer
name2 Matthias
title (cze) Kausalita v časových řadách: její detekce a kvantifikace prostředky teorie informace
keyword causality
keyword time series
keyword information theory
author (primary)
ARLID cav_un_auth*0247122
name1 Hlaváčková-Schindler
name2 Kateřina
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2009/AS/schindler-causality in time series its detection and quantification by means of information theory.pdf
cas_special
project
project_id 2C06001
agency GA MŠk
ARLID cav_un_auth*0217685
research CEZ:AV0Z10750506
abstract (eng) While studying complex systems, one of the fundamental questions is to identify causal relationships (i.e., which system drives which) between relevant subsystems. In this paper, we focus on information-theoretic approaches for causality detection by means of directionality index based on mutual information estimation. We briefly review the current methods for mutual information estimation from the point of view of their consistency. We also present some arguments from recent literature, supporting the usefulness of the information-theoretic tools for causality detection.
abstract (cze) Nalezení příčinných vztahů je důležitým krokem při studiu složitých systémů. Práce řeší tento problém z hlediska teorie informace.
reportyear 2010
RIV BD
permalink http://hdl.handle.net/11104/0005047
arlyear 2008
mrcbU63 cav_un_epca*0320324 Information Theory and Statistical Learning 978-0-387-84815-0 183 207 Information Theory and Statistical Learning New York Springer 2008 Computer Science
mrcbU67 Emmert-Streib Frank 340
mrcbU67 Dehmer Matthias 340