bibtype J - Journal Article
ARLID 0322640
utime 20240103191443.1
mtime 20090422235959.9
WOS 000243908500010
DOI 10.1007/s10107-006-0029-9
title (primary) (eng) On the solution of large-scale SDP problems by the modified barrier method using iterative solvers
specification
page_count 32 s.
serial
ARLID cav_un_epca*0257227
ISSN 0025-5610
title Mathematical Programming
volume_id 109
page_num 413-444
publisher
name Springer
title (cze) Řešení rozsáhlých SDP problémů modifikovanou metodou bariér za použití iterativních výpočetních zařízení
keyword semidefinite programming
keyword iterative methods
keyword preconditioned conjugate gradients
keyword augmented lagrangian methods
author (primary)
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021060
name1 Stingl
name2 M.
country DE
cas_special
project
project_id IAA1075402
agency GA AV ČR
ARLID cav_un_auth*0012788
research CEZ:AV0Z10750506
abstract (eng) The limiting factors of second-order methods for large-scale semidefinite optimization are the storage and factorization of the Newton matrix. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable alternative for problems with a large number of variables and modest size of the constrained matrix. We further propose to avoid explicit calculation of the Newton matrix either by an implicit scheme in the matrix-vector product or using a finite-difference formula. This leads to huge savings in memory requirements and, for certain problems, to further speed-up of the algorithm.
abstract (cze) Limitováné faktorý druhotných metod pro rozsáhlé semidifinitní optimalizace jsou uložené a faktorizovány v Newtonově matici. Pro praktický algoritmus založený na modifikované metodě bariér jsme nuceni použít iterativních výpočetních zařítení, používaných pro přímé faktorizování techniky.
reportyear 2009
RIV BA
permalink http://hdl.handle.net/11104/0170830
mrcbT16-f 2.183
mrcbT16-g 0.385
mrcbT16-h >10.0
mrcbT16-i 0.01836
mrcbT16-j 1.811
mrcbT16-k 3644
mrcbT16-l 52
mrcbT16-q 66
mrcbT16-s 2.166
mrcbT16-y 23.24
mrcbT16-x 1.62
arlyear 2007
mrcbU34 000243908500010 WOS
mrcbU63 cav_un_epca*0257227 Mathematical Programming 0025-5610 1436-4646 Roč. 109 2-3 2007 413 444 Springer