bibtype |
J -
Journal Article
|
ARLID |
0322892 |
utime |
20240111140717.3 |
mtime |
20090424235959.9 |
WOS |
000263661700006 |
DOI |
10.1016/j.fss.2008.09.018 |
title
(primary) (eng) |
Migrativity of aggregation functions |
specification |
page_count |
12 s. |
media_type |
www |
|
serial |
ARLID |
cav_un_epca*0256642 |
ISSN |
0165-0114 |
title
|
Fuzzy Sets and Systems |
volume_id |
160 |
volume |
6 (2009) |
page_num |
766-777 |
publisher |
|
|
title
(cze) |
Migrativita agregačních funkcií |
keyword |
Aggregation functions |
keyword |
Associativity |
keyword |
Bisymmetry |
keyword |
Migrativity |
keyword |
Nullnorms |
keyword |
t-Norms |
keyword |
Uninorms |
author
(primary) |
ARLID |
cav_un_auth*0248954 |
name1 |
Bustince |
name2 |
H. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0248955 |
name1 |
Montero |
name2 |
J. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0101163 |
name1 |
Mesiar |
name2 |
Radko |
institution |
UTIA-B |
full_dept |
Department of Econometrics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA402/08/0618 |
agency |
GA ČR |
ARLID |
cav_un_auth*0241569 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
In this paper we introduce a slight modification of the definition of migrativity for aggregation functions that allows useful characterization of this property. In this context we prove that there are no t-conorms, uninorms or nullnorms that satisfy migrativity and that the only migrative idempotent aggregation function is the geometric mean. The k-Lipschitz migrative aggregation functions are also characterized and the product is shown to be the only 1-Lipschitz migrative aggregation function. Finally, the associativity and bisymmetry of migrative aggregation functions are discussed. |
abstract
(cze) |
Pro agregační funkce jsme zavedli malou modifikci definice migrativity, která umožní vhodnou charakterizaci této vlastnosti. Ukázali jsme, že neexistují t-conormy, uninormy a nullnormy, které by vyhovovali migrativitě a že jediná migrativní idempotentní agregační funkce je geometrický příměr. Dále jsme charakterizovali k-Lipschitzovskou migrativní agregační funkci a ukázali jsme, že jediná 1-Lipschitzovská migrativní funkce je součin. Na závěr jsme se věnovali asociativitě a bisymetrii migrativních agregačních funkcí. |
reportyear |
2009 |
RIV |
BA |
permalink |
http://hdl.handle.net/11104/0171025 |
mrcbT16-f |
2.551 |
mrcbT16-g |
0.256 |
mrcbT16-h |
>10.0 |
mrcbT16-i |
0.01349 |
mrcbT16-j |
0.605 |
mrcbT16-k |
13363 |
mrcbT16-l |
227 |
mrcbT16-q |
99 |
mrcbT16-s |
1.656 |
mrcbT16-y |
28.82 |
mrcbT16-x |
2.83 |
arlyear |
2009 |
mrcbU34 |
000263661700006 WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 160 č. 6 2009 766 777 Elsevier |
|