bibtype J - Journal Article
ARLID 0326282
utime 20240103191810.6
mtime 20090622235959.9
WOS 000268403800008
DOI 10.1016/j.imavis.2009.02.001
title (primary) (eng) Using noise inconsistencies for blind image forensics
specification
page_count 8 s.
serial
ARLID cav_un_epca*0256733
ISSN 0262-8856
title Image and Vision Computing
volume_id 27
volume 10 (2009)
page_num 1497-1503
publisher
name Elsevier
title (cze) Použití šumových nehomogenit při pasivním ověřování pravosti fotografií
keyword Image forensics
keyword Digital forgery
keyword Image tampering
keyword Image segmentation
author (primary)
ARLID cav_un_auth*0101189
name1 Saic
name2 Stanislav
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0206076
name1 Mahdian
name2 Babak
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2009/ZOI/saic-using%20noise%20inconsistencies%20for%20blind%20image%20forensics.pdf
cas_special
project
project_id GA102/08/0470
agency GA ČR
ARLID cav_un_auth*0239565
research CEZ:AV0Z10750506
abstract (eng) A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. The amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.
abstract (cze) Obvyklý způsob, kterým se zakrývá úprava fotografií je přidání aditivního šumu. Přítomnost šumu znesnadňuje detekci těchto úprav.Avšak přidání lokálního šumu může způsobit nespojitosti šumu obrazu. V článku je navržena nová metoda, která je umožňuje rozdělení obrazu na části s homogením šumem. Na řadě experimentů je demonstrována účinnost metody a její závislost na JPEG komprimaci.
reportyear 2010
RIV IN
permalink http://hdl.handle.net/11104/0173430
mrcbT16-f 1.767
mrcbT16-g 0.286
mrcbT16-h 6.7
mrcbT16-i 0.00782
mrcbT16-j 0.592
mrcbT16-k 2926
mrcbT16-l 161
mrcbT16-q 75
mrcbT16-s 1.254
mrcbT16-y 33.93
mrcbT16-x 2.48
arlyear 2009
mrcbU34 000268403800008 WOS
mrcbU63 cav_un_epca*0256733 Image and Vision Computing 0262-8856 1872-8138 Roč. 27 č. 10 2009 1497 1503 Elsevier