bibtype |
J -
Journal Article
|
ARLID |
0326994 |
utime |
20240111140723.3 |
mtime |
20090715235959.9 |
WOS |
000267766900004 |
DOI |
10.1080/10652460902727938 |
title
(primary) (eng) |
Effective solution of a linear system with Chebyshev coefficients |
specification |
page_count |
30 s. |
media_type |
www |
|
serial |
ARLID |
cav_un_epca*0253467 |
ISSN |
1065-2469 |
title
|
Integral Transforms and Special Functions |
volume_id |
20 |
volume |
8 (2009) |
page_num |
619-628 |
|
title
(cze) |
Efektivní řešení lineárního systému pomocí Chebyshevových koeficientů |
keyword |
orthogonal Chebyshev polynomials |
keyword |
hypergeometric functions |
keyword |
optimal PWM problem |
author
(primary) |
ARLID |
cav_un_auth*0213215 |
name1 |
Kujan |
name2 |
Petr |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0021101 |
name1 |
Hromčík |
name2 |
M. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0101204 |
name1 |
Šebek |
name2 |
Michael |
institution |
UTIA-B |
full_dept |
Department of Control Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
1M0567 |
agency |
GA MŠk |
country |
CZ |
ARLID |
cav_un_auth*0202350 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
This paper presents an efficient algorithm for a special triangular linear system with Chebyshev coefficients. We present two methods of derivations, the first is based on formulae where the nth power of x is solved as the sum of Chebyshev polynomials and modified for a linear system. The second deduction is more complex and is based on the Gauss–Banachiewicz decomposition for orthogonal polynomials and the theory of hypergeometric functions which are well known in the context of orthogonal polynomials. The proposed procedure involves O(nm) operations only, where n is matrix size of the triangular linear system L and m is number of the nonzero elements of vector b. Memory requirements areO(m), and no recursion formula is needed. The linear system is closely related to the optimal pulse-wide modulation problem. |
abstract
(cze) |
Článek prezentuje efektivní algoritmus pro specielní trojúhelnikový lineární systém s Chebyshevovými koeficienty. Předkládáme dvě metody derivací, první je založena na rovnici, kde n-tá mocnica z x je řešena jako suma Chebyshevových polynomů a modifikována pro lineární systém. Druhé odvození je více komplexní a je založeno na Gauss-Banachiewicz dekompozici pro ortogonální polynomy a teorii hypergeometrických funkcí. |
reportyear |
2010 |
RIV |
BC |
permalink |
http://hdl.handle.net/11104/0173907 |
mrcbT16-f |
0.650 |
mrcbT16-g |
0.098 |
mrcbT16-h |
5 |
mrcbT16-i |
0.0029 |
mrcbT16-j |
0.397 |
mrcbT16-k |
436 |
mrcbT16-l |
82 |
arlyear |
2009 |
mrcbU34 |
000267766900004 WOS |
mrcbU56 |
textový dokument 157 kB |
mrcbU63 |
cav_un_epca*0253467 Integral Transforms and Special Functions 1065-2469 1476-8291 Roč. 20 č. 8 2009 619 628 |
|