bibtype J - Journal Article
ARLID 0326994
utime 20240111140723.3
mtime 20090715235959.9
WOS 000267766900004
DOI 10.1080/10652460902727938
title (primary) (eng) Effective solution of a linear system with Chebyshev coefficients
specification
page_count 30 s.
media_type www
serial
ARLID cav_un_epca*0253467
ISSN 1065-2469
title Integral Transforms and Special Functions
volume_id 20
volume 8 (2009)
page_num 619-628
title (cze) Efektivní řešení lineárního systému pomocí Chebyshevových koeficientů
keyword orthogonal Chebyshev polynomials
keyword hypergeometric functions
keyword optimal PWM problem
author (primary)
ARLID cav_un_auth*0213215
name1 Kujan
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021101
name1 Hromčík
name2 M.
country CZ
author
ARLID cav_un_auth*0101204
name1 Šebek
name2 Michael
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový dokument
url http://dx.doi.org/10.1080/10652460902727938
source_size 157 kB
cas_special
project
project_id 1M0567
agency GA MŠk
country CZ
ARLID cav_un_auth*0202350
research CEZ:AV0Z10750506
abstract (eng) This paper presents an efficient algorithm for a special triangular linear system with Chebyshev coefficients. We present two methods of derivations, the first is based on formulae where the nth power of x is solved as the sum of Chebyshev polynomials and modified for a linear system. The second deduction is more complex and is based on the Gauss–Banachiewicz decomposition for orthogonal polynomials and the theory of hypergeometric functions which are well known in the context of orthogonal polynomials. The proposed procedure involves O(nm) operations only, where n is matrix size of the triangular linear system L and m is number of the nonzero elements of vector b. Memory requirements areO(m), and no recursion formula is needed. The linear system is closely related to the optimal pulse-wide modulation problem.
abstract (cze) Článek prezentuje efektivní algoritmus pro specielní trojúhelnikový lineární systém s Chebyshevovými koeficienty. Předkládáme dvě metody derivací, první je založena na rovnici, kde n-tá mocnica z x je řešena jako suma Chebyshevových polynomů a modifikována pro lineární systém. Druhé odvození je více komplexní a je založeno na Gauss-Banachiewicz dekompozici pro ortogonální polynomy a teorii hypergeometrických funkcí.
reportyear 2010
RIV BC
permalink http://hdl.handle.net/11104/0173907
mrcbT16-f 0.650
mrcbT16-g 0.098
mrcbT16-h 5
mrcbT16-i 0.0029
mrcbT16-j 0.397
mrcbT16-k 436
mrcbT16-l 82
arlyear 2009
mrcbU34 000267766900004 WOS
mrcbU56 textový dokument 157 kB
mrcbU63 cav_un_epca*0253467 Integral Transforms and Special Functions 1065-2469 1476-8291 Roč. 20 č. 8 2009 619 628