bibtype C - Conference Paper (international conference)
ARLID 0327312
utime 20240103191906.9
mtime 20090724235959.9
WOS 000268585700049
SCOPUS 69049089935
DOI 10.1007/978-3-642-02906-6_49
title (primary) (eng) Triangulation Heuristics for BN2O Networks
specification
page_count 12 s.
serial
ARLID cav_un_epca*0327310
ISBN 978-3-642-02905-9
ISSN 0302-9743
title Symbolic and Quantitative Approaches to Reasoning with Uncertainty
page_num 566-577
publisher
place Berlin
name Springer
year 2009
editor
name1 Sossai
name2 C.
editor
name1 Chemello
name2 G.
title (cze) Heuristiky pro triangulaci sítí typu BN2O
keyword Bayesian network
keyword BN2O
keyword noisy-or
keyword graphical transformation
keyword parent divorcing
keyword tensor rank-one decomposition
author (primary)
ARLID cav_un_auth*0100825
name1 Savický
name2 Petr
institution UIVT-O
full_dept Department of Theoretical Computer Science
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id 1M0545
agency GA MŠk
country CZ
ARLID cav_un_auth*0203502
project
project_id 1ET100300517
agency GA AV ČR
ARLID cav_un_auth*0001446
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GEICC/08/E010
agency GA ČR
ARLID cav_un_auth*0241637
project
project_id GA201/09/1891
agency GA ČR
ARLID cav_un_auth*0253175
research CEZ:AV0Z10300504
research CEZ:AV0Z10750506
abstract (eng) A BN2O network is a Bayesian network having the structure of a bipartite graph with all edges directed from one part (the top level) toward the other (the bottom level) and where all conditional probability tables are noisy-or gates. In order to perform efficient inference, graphical transformations of these networks are performed. The complexity of inference is proportional to the total table size of tables corresponding to the cliques of the triangulated graph. Therefore in order to get efficient inference it is desirable to have small cliques in the triangulated graph. We analyze existing heuristic triangulation methods applicable to BN2O networks after transformations using parent divorcing and tensor rank-one decomposition and suggest several modifications. Both theoretical and experimental results confirm that tensor rank-one decomposition yields better results than parent divorcing in randomly generated BN2O networks that we tested.
abstract (cze) Síť typu BN2O je Bayesovská síť se strukturou bipartitního grafu, ve kterém jsou všechny hrany orientované z jedné části (horní vrstva) do druhé části (dolní vrstva) a ve kterém jsou všechny pravděpodobnostní tabulky noisy-or. Pro zvýšení efektivnosti inference jsou tyto sítě transformovány z hlediska jejich grafové struktury. Složitost inference je úměrná celkové velikosti tabulek v síti. Proto je cílem transformace dosáhnout co nejmenší součet velikosti tabulek triangulované sítě. Článek testuje existující metody triangulace aplikovatelné na sítě BN2O po transformacích parent divorcing a tensor rank-one decomposition a navrhuje některé modifikace. Jak teoretické, tak experimentální výsledky potvrzují, že tensor rank-one decomposition poskytuje lepší výsledky než parent divorcing na náhodně generovaných sítích BN2O, které byly v experimentu použity.
action
ARLID cav_un_auth*0252448
name ECSQARU 2009. European Conference /10./
place Verona
dates 01.07.2009-03.07. 2009
country IT
reportyear 2010
RIV BA
permalink http://hdl.handle.net/11104/0174155
arlyear 2009
mrcbU14 69049089935 SCOPUS
mrcbU34 000268585700049 WOS
mrcbU63 cav_un_epca*0327310 Symbolic and Quantitative Approaches to Reasoning with Uncertainty 978-3-642-02905-9 0302-9743 566 577 Berlin Springer 2009 Lecture Notes in Artificial Intelligence 5590
mrcbU67 Sossai C. 340
mrcbU67 Chemello G. 340