bibtype C - Conference Paper (international conference)
ARLID 0328917
utime 20240103192028.6
mtime 20090915235959.9
title (primary) (eng) Log-Normal Merging for Distributed System Identification
specification
page_count 6 s.
media_type www
serial
ARLID cav_un_epca*0328916
title Proceedings of the 15th IFAC Symposium on System Identification
page_num 1-6
publisher
place Saint Malo
name IFAC
year 2009
title (cze) Lognormální skládání pravděpodobností pro distribuovanou identifikaci systémů
keyword Bayesian Methods
keyword Hybrid and Distributed System Identification
keyword Particle Filtering/Monte Carlo Methods
author (primary)
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2009/AS/smidl-log-normal merging for distributed system identification.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GP102/08/P250
agency GA ČR
ARLID cav_un_auth*0241640
project
project_id GA102/08/0567
agency GA ČR
ARLID cav_un_auth*0239566
research CEZ:AV0Z10750506
abstract (eng) Growing interest in applications of distributed systems, such as multi-agent systems, increases demands on identification of distributed systems from partial information sources collected by local agents. We are concerned with fully distributed scenario where system is identified by multiple agents, which do not estimate state of the whole system but only its local `state'. The resulting estimate is obtained by merging of marginal and conditional posterior probability density functions (pdf) on such local states. We investigate the use of recently proposed non-parametric log-normal merging of such `fragmental' pdfs for this task. We derive a projection of the optimal merger to the class of weighted empirical pdfs and mixtures of Gaussian pdfs. We illustrate the use of this technique on distributed identification of a controlled autoregressive model.
abstract (cze) S rozvojem distribuovaných sstémů se zvyšují nároky na jejich identifikaci z distribuovaných a neúplných měření. Tento článek se zabývá plně distribuovaným scénářem, kde každý lokální agent identifikuje pouze svoji část systému. Identifikace celého systému je získána složením aposteriorních distribucí jednotlivých agentů. K tomu je použita nová technika log-normálního skládání hustot pravdepodobnosti. Postup je ilustrován na jednoduchém příkladu.
action
ARLID cav_un_auth*0253846
name 15th IFAC Symposium on System Identification
place Saint Malo
dates 06.07.2009-08.07.2009
country FR
reportyear 2010
RIV BC
permalink http://hdl.handle.net/11104/0175102
arlyear 2009
mrcbU63 cav_un_epca*0328916 Proceedings of the 15th IFAC Symposium on System Identification 1 6 Saint Malo IFAC 2009