bibtype J - Journal Article
ARLID 0329394
utime 20240111140725.4
mtime 20091221235959.9
WOS 000272903100004
SCOPUS 72949124434
DOI 10.1007/s11263-009-0259-4
title (primary) (eng) Implicit Moment Invariants
specification
page_count 15 s.
media_type www
serial
ARLID cav_un_epca*0253363
ISSN 0920-5691
title International Journal of Computer Vision
volume_id 86
volume 1 (2010)
page_num 72-86
publisher
name Springer
title (cze) Implicitní momentové invarianty
keyword Implicit invariants
keyword Orthogonal polynomials
keyword Polynomial image deformation
author (primary)
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept Department of Image Processing
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0068479
name1 Kautský
name2 J.
country CZ
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept Department of Image Processing
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2009/ZOI/flusser-0329394.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GA102/08/1593
agency GA ČR
ARLID cav_un_auth*0239572
research CEZ:AV0Z10750506
abstract (eng) The use of traditional moment invariants in object recognition is limited to simple geometric transforms, such as rotation, scaling and affine transformation of the image. This paper introduces so-called implicit moment invariants. Implicit invariants measure the similarity between two images factorized by admissible image deformations. For many types of image deformations traditional invariants do not exist but implicit invariants can be used as features for object recognition. In the paper we present implicit moment invariants with respect to polynomial transform of spatial coordinates, describe their stable and efficient implementation bymeans of orthogonal moments, and demonstrate their performance in artificial as well as real experiments.
abstract (cze) Tradiční momentové invarianty jsou omezeny pouze na jednoduché transformace rozpoznávaných objektů, jako je rotace, změna meřítka či afinní transformace. V tomto článku zavádíme tzv "implicitní momentové invarianty" vzhledem k polynomialním deformacím objektu. Je vysvětlena nejen příslušná teorie, ale i efektivní implementace pomocí ortogonalních momentů.
reportyear 2010
RIV BD
mrcbC52 4 A 4a 20231122133831.1
permalink http://hdl.handle.net/11104/0175445
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 6.986
mrcbT16-g 0.808
mrcbT16-h 6.9
mrcbT16-i 0.02168
mrcbT16-j 2.648
mrcbT16-k 9898
mrcbT16-l 99
mrcbT16-s 3.055
mrcbT16-4 Q1
mrcbT16-B 96.6
mrcbT16-C 98.611
mrcbT16-D Q1*
mrcbT16-E Q1
arlyear 2010
mrcbTft \nSoubory v repozitáři: flusser-0329394.pdf
mrcbU14 72949124434 SCOPUS
mrcbU34 000272903100004 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0253363 International Journal of Computer Vision 0920-5691 1573-1405 Roč. 86 č. 1 2010 72 86 Springer